Please use this identifier to cite or link to this item:
標題: 利用梳狀微流道分離捕捉單一顆粒之實驗研究
Separation and Trapping of Single particles in Comb-like Microchannels
作者: 蔡惟亘
Tsai, Wei-Hsuan
關鍵字: 液動力分離;hydrodynamic filtration;單一顆粒;阻抗;微流道;single particle;impedance;microfluidics
出版社: 機械工程學系所
引用: [1] Craighead H., Future lab-on-a-chip technologies for interrogating individual molecules, Nature, Vol. 442, pp. 387-393, Jul 27 2006. [2] Abgrall P., Gue A. M., Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review, Journal of Micromechanics and Microengineering, Vol. 17, pp. R15-R49, 2007. [3] Haeberle S., Zengerle R., Microfluidic platforms for lab-on-a-chip applications, Lab on a Chip, Vol. 7, pp. 1094-1110, Sep 2007. [4] Pamme N., Continuous flow separations in microfluidic devices, Lab on a Chip, Vol. 7, pp. 1644-1659, 2007. [5] Sugaya S., Yamada M., Seki M., Observation of non-spherical particle behaviors for continuous shape-based separation using hydrodynamic filtration, Biomicrofluidics, Vol. 5, pp.1-8, 2011 [6] Yamada M., Seki M., Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics, Lab on a Chip, Vol. 5, pp. 1233-1239, 2005 [7] Yamada M., Seki M., Microfluidic particle sorter employing flow splitting and recombining, Analytical Chemistry, Vol. 78, pp. 1357-1362, 2006. [8] Aoki R., Yamada M., and Seki M., In-channel focusing of flowing microparticles utilizing hydrodynamic filtration, Microfluidics and Nanofluidics, Vol. 6, pp. 571-576, 2009. [9] Nilsson J., Evande M., Hammarstrom B., and Laurell T., Review of cell and particle trapping in microfluidic systems, Analytica Chimica Acta, Vol. 649, pp. 141-157, 2009. [10] Ozkan M., Wang M., Ozkan C., Flynn R., Birkbeck A., and Esener S., Optical manipulation of objects and biological cells in microfluidic devices, Biomedical Microdevices, Vol. 5, pp. 61-67, 2003. [11] Ryu W. H., Huang Z., Park J. S., Moseley J., Grossman A. R., Fasching R. J., and Prinz F. B., Open micro-fluidic system for atomic force microscopy-guided in situ electrochemical probing of a single cell, Lab on a Chip, Vol. 8, pp. 1460–1467, 2008. [12] Carlo D. D., Aghdam N., and Lee L. P., Single-Cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays, Analytical Chemistry, Vol. 78, pp. 4925-4930, 2006. [13] Kobel S., Valero A., Latt J., Renaud P., and Lutolf M., Optimization of microfluidic single cell trapping for long-term on-chip culture, Lab on a Chip, Vol. 10, pp.857–863, 2010. [14] Tan W. H., Takeuchi S., A trap-and-release integrated microfluidic system for dynamic microarray applications, Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, pp. 1146-1151, 2007 [15] Sochol R. D., Dueck M., S. Li, Lee L. P., and Lin L., Hydrodynamic resettability for a microfluidic particulate-based arraying system, Lab on a Chip, Vol. 12, pp. 5051-5056, 2012 [16] Gawad S., Sun T., Green N. G., and Morgan H., Impedance spectroscopy using maximum length sequences: Application to single cell analysis, Review of Scientific Instruments, Vol. 78, 054301-1-7, 2007. [17] Holmes D., Pettigrew D., Reccius C. H., Gwyer J. D., Berkel C. V., Holloway J., Daviesb D. E., and Morgan H., Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry, Lab on a Chip, Vol. 9, No. 4, pp. 2881-2889, 2009. [18] Cheung K., Gawad S., and Renaud P., Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation, Cytometry, Part A, Vol. 65A, pp. 124-132, 2005. [19] Holmes D., and Morgan H., Single cell impedance cytometry for identification and counting of CD4 T-Cells in human blood using impedance labels, Analytical Chemistry, Vol. 82, No. 4, pp.1455-1461, 2010. [20] Ayliffe H. E., Frazier A. B., and Rabbitt R. D., Electric impedance spectroscopy using microchannels with integrated metal electrodes, IEEE Journal of Microelectromechanical Systems, Vol. 08, pp. 50-57, 1999. [21] Iliescu C., Poenar D. P., Carp M., and Loe F. C., A microfluidic device for impedance spectroscopy analysis of biological samples, Sensors and Actuators B: Chemical, Vol. 123, pp. 168-176, 2007. [22] Jang L. S., and Wang M. H., Microfluidic device for cell capture and impedance measurement, Biomedical Microdevices, Vol. 9, pp. 737-743, Oct 2007. [23] Wang J. W., Wang M. H., and Jang L. S., Effects of electrode geometry and cell location on single-cell impedance measurement, Biosensors & Bioelectronics, Vol. 25, pp. 1271-1296, Feb 15 2010. [24] Sun T., Bernabini C., and Morgan H., Single-Colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte microcapsules, Langmuir, Vol. 26, No. 6 , pp. 3821-3828, 2010. [25] Nasir M., Ateya D. A., Burk D., Golden J. P., and Ligler F. S., Hydrodynamic focusing of conducting fluids for conductivity-based biosensors, Biosensors and Bioelectronics, Vol. 25, pp. 1363-1369, 2010. [26] Park H., Kim D., and Yun K. S., Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection, Sensors and Actuators B: Chemical, Vol. 150, pp. 167-173, 2010. [27] Joo S., Kim K. H., Kim H. C., Chung T. D., A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence, Biosensors and Bioelectronics, Vol. 25, pp. 1509-1515, 2010. [28] White F. M., Vicous Fluid Flow, McGraw-Hill, New York, 1974, pp. 123-124. [29] McDonald J. C., Duffy D. C., Anderson J. R., Chiu D. T., Wu H. K., Schueller O. J. A., and Whitesides G. M., Fabrication of microfluidic systems in polydimethylsiloxane, Electrophoresis, Vol. 21, pp. 27-40, 2000. [30] Jaeger R. C., Introduction to Microelectronic Fabrication, Addison-Wesley, Reading, MA, pp. 17–25, 2002. [31] Gardner J. W., Varadan V. K., Awadelkarim O. O., Microsensors MEMS and Smart devices, John Wiley & Sons, LTD, 2010. [32] Xia Y., Whitesides G. M., Soft Lithography, Annual Review of Materials Science, Vol. 28, pp. 153-184, 1998. [33]黃韋翔, 梳狀微流道內微顆粒分離實驗, 國立中興大學碩士論文, 2009. [34] Sochol R. D., Dueck M. E., Li S., Lee L. P., and Lin L., Hydrodynamic resettability for a microfluidic particulate-based arraying system, Lab on a Chip, pp. 5051-5056, 2012. [35] Gawad S., Schild L.,Renaud PH., Micromachined impedance spectroscopy flow cytomerter for cell analysis and particle sizing, Lab on a Chip, pp. 76-82, 2001. [36] Alexander C. k., Sadiku M. N. O., Fundamentals of Electric Circuits, McGraw-Hill, pp. 369-384, 2006. [37] Bard A.J., Faulkner L. R., Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, pp. 368-387, 2001 [38] Maples R. E., Petroleum Refinery Process Economics, PennWell, 2000. [39]高敏峯, 單一細胞阻抗平台之研發, 國立成功大學碩士論文, 2007.
本研究利用液動力分離原理,設計梳狀流道結構,用以分離及捕捉單一微顆粒,並結合微電極量測捕捉區間內的阻抗。微流道結構以微影及軟微影製程製作,電極晶片則利用微影製程及Lift-off技術完成,兩者結合而成為本實驗研究之單一顆粒阻抗量測晶片。實驗結果證實,本分離捕捉單一顆粒系統之原理與設計的可行性,並於深50 μm×寬50 μm及深30 μm×寬50 μm之捕捉槽成功分離捕捉直徑20 μm的單一顆粒。另外,於捕捉槽的阻抗量測,可以明確辨別直徑20 μm之聚苯乙烯微顆粒,捕獲前後阻抗值的差異,約增加10%。希望此研究方法與相關設計可以應用於大量檢測單一個體的生醫分析系統。

n this study, the hydrodynamic filtration technique was empolyed to separate and trap single particles in the comb-like microchannels. The channel structure was designed according to the equivalent flow resistance network system. Micro sensing electrodes were added to the system to measure the impedance in the trapping region of the branch channel for detection of the captured single particles. In the experiments, the channel structure for separation and trapping of single particles was made of Polydimethylsiloxane (PDMS) channel using the lithography and soft lithography techniques, and the electrode chip for impedance measurements was fabricated using the lithography and lift-off techniques. Single microbeads of 20 μm in diameter were successfully trapped at flow rates of 10 μL/min and channel depths of 30 and 50 μm. The measurement results also show that the impedance increased 10% at the frequency range of 20-90 kHz when the particle was captured between the sensing electrodes. This device has great potential for applications in single cells capturing, culturing and monitoring systems.
其他識別: U0005-0808201312103400
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.