Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorFang, Wan- Chungen_US
dc.identifier.citation古弘輝。2006。可拋棄式環盤電極在電分析化學之多樣應用性。國立中興大學化學研究所碩士論文。 周忠賢。1997。黏粒修飾電極之光電化學研究。國立中興大學化學研 究所碩士論文。 高衛聖。2003。利用普魯士藍修飾電極探討三價砷在土壤中的吸附與 脫附。國立中興大學土環所碩士論文。 高衛聖、陳鴻基、曾志明。2005a。利用普魯士藍修飾電極對三價砷偵測機制之探討。中華農學會報6: 269-285。 高衛聖、陳鴻基、曾志明。2005b。利用普魯士藍修飾電極探討不同土壤對三價砷的吸附與脫附。中華農學會報6: 481-499。 張銘仁。1998。利用化學修飾電及偵測有機鹼之研究。國立中興大學 化學研究所碩士論文。 陳鴻基、曾志明。2003a。銅離子的競爭吸附會巴拉刈在黏粒膜層中移動性的影響。興大農林學報52: 1-19。 陳鴻基、曾志明。2003b。銅離子的競爭吸附會巴拉刈在黏粒膜層中移動性的影響。興大農林學報4: 429-446。 陳品誌。1997。利用黏粒修飾電極偵測尿酸及多巴胺之研究。國立中 興大學化學研究所碩士論文。 楊庭豪、陳鴻基、曾志明。2003。利用網版印刷碳電極探討巴拉刈在黏土礦物表面上的鍵結。土壤與環境 6: 193-206. 楊庭豪。2004。利用化學修飾電極法探討不銅離子及堆肥對巴拉刈在土壤中移動性的影響。國立中興大學土壤環境科學系碩士論文。 楊庭豪、陳鴻基、曾志明。2006。以電化學方法探討堆肥宇不銅離子處理對巴拉刈在土壤中移動性的影響。中華農學會 7: 363-386. 鄭世堃。2007。黏土礦物層面電荷特性之電化學分析。國立中興大學 土環所碩士論文。 謝祥麟、陳鴻基、曾志明。2005a。利用電化學分析法對土壤鉛離子偵測之探討。中華農學會 6: 401-419。 謝祥麟、陳鴻基、曾志明。2005b。利用電化學技術探討土壤酸鹼度對鉛離子在土壤中反應的影響。中華農學會報6: 431-445。 羅卿文。1996。黏粒酵素修飾電極對葡萄糖偵測之研究。國立中興大 學化學研究所碩士論文。 Abbaspour, A., M.A. Mehrgardi, and R. Kia, 2004. Electrocatalytic oxidation of guanine and ss-DNA at a cobalt (II) phthalocyanine modified carbon paste electrode J. Electroanal.Chem. 568: 261–266. Adams, R.N. 1978. Electrochemistry at solid electrodes. Marcel .New York. copying 80. Baldwin, R.P., K.N. Thomsen. 1991. Chemically modified electrodes in liquid chromatography detection: A review Talanta. 38:(1) 1-16. Bard, A.J., and L.R. Faulkner. 1980. Electrochemical Methods Fundamentals and Applications. John Wiley & Sons. New York. Bertoncello, P., A. Notargiacomo., and A.D. Ranasinghe. 2005. Langmuir-Schaefer Films of Nafion with Incorporated TiO2. Nanoparticles. Langmuir 21: 172- 177. Blauch, D.N. and J.M. Saveant, 1992. Dynamics of Electron Hopping in Assemblies of Redox Centers. Percolation and Diffusion. J. Am. Chem. Soc. 114: 3323-3332. Brabec, V., and G. Dryhurst. 1978. Electrochemical behavior of natural and biosynthetic polynucleotides at the pyrolytic graphite electrode A new probe for studies of polynucleotide structure and reactions. J. Electroanal. Chem. 89: 161-173. Brabec, V., and G. Dryhurst. 1978. Electrochemical oxidation of polyadenylic acid at graphite electrodes. J. Electroanal. Chem. 91: 219-229. Brabec, V. 1981. Nucleic acid analysis by voltammetry at carbon electrodes. Bioelectrochem. Bioenerg. 8: 437-449. Brune, S.N. and D.R. Bobbit. 1992. Role of Electron-Donating / Withdrawing Character, pH, and Stoichiometry on the Chemiluminescent Reaction of Tris(2,2’-bipyridyl)ruthenium(Ⅲ) with Amino Acids. Anal. Chem. 64: 166-170. Buttry, D.A., and F.C. Ansin. 1982. Electrochemical control of the luminescent lifetime of Ru(bpy)32+ incorporated in nafion films on graphite electrodes. J. Am. Chem. Soc. 104: 4824 - 4829. Choi, H.N., S.H. Cho, and W.Y. Lee . 2005. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection. Anal. Chem. 77: 8166-8169. Cox, J.A., R.K. Jaworski., and P.J. Kulesza. 1991. Electroanal. 3: 869-. Damien W.M. Arrigan.1994. Tutorial review. Voltammetric determination of trace metals and organics after accumulation at modified electrodes. Analyst 119: 1953-1966. Dennany. L., R.J. Forster, and J. F. Rusling. 2003. Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films. J. Am. Chem. Soc. 125: 5213 -5218. Ding, Z. and R.L. Frost. 2002. Controlled rate thermal analysis of nontronite. Thermochimica Acta 389: 185-193. Drummond, T.G., G.H. Michael, and K.B. Jacqueline. 2003. Electrochemical DNA sensors. Nature Biochem. 21: 1192-1199. Dryhurst, G., and L.G. Karber. 1978. Differential pulse voltammetric oxidation of polyriboxanthylic acid at the pyrolytic graphite electrode and a method for detection and determination of traces of xanthine and xanthosine-5''- monophosphate in polyxanthylic acid. Anal. Chim. Acta 100: 289-300. Fitch, A. 1990. Clay modified electrodes: a review. Clays Clay Miner. 38: 391-400. Fitch, A., J. Du, H. Gan, and J.W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays Clay Miner. 43: 607-614. Du, Y.B., Qi.X. Yang., and E.J. Wang. 2006. Chem Phys 110: 21662-21669. Gao, Z.Q., and Z.C. Yang. 2006. Detection of microRNAs using electrocatalytic nanoparticle tags, Anal. Chem. 78:1470–1477. Gao, Z.Q., G. Binyamin, H.H. Kim, S.C. Barton, Y.Zhang, and A.-Heller. Electrodeposition of redox polymers and codeposition of enzymes by coordinative crosslinking. Angew. Chem. Int. Ed. 41: 810–813. Gerardi, R.D., N.W. Barnett., and S.W. Lewis. 1999. Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent Chim. Acta. 378: 1- 41. Ghosh, P.K., and A. J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Gilmartin, M.A., and J.P. Hart. 1995. Sensing with chemically and biologically modified carbon electrodes. A review Analyst 120: 1029 -1045. Gorman, B.A., P.S. Francis, and N.W. Barnett. 2006. Analyst. 131:161- Goyal, R.N., and G.Dryhurst. 1982. Redox chemistry of guanine and 8-oxyguanine and a comparison of the peroxidase-catalyzed and electrochemical oxidation of 8-oxyguanine. J. Electroanal. Chem. 135 :75 – 91. Hernández, P., E. Alda, and L. Hernández. Determination of mercury(Ⅱ) using a modified electrode with zeolite. J. Anal. Chem. 327: 676-678. Hernández, L., P. Hernández, and Z. Sosa. 1988. Determination of phenol by differential-pulse voltammetry with s sepiolite-modified carbon paste electrodes. J. Anal. Chem. 331: 525-527. Hrapovic, S., E. Majid, Y. Liu, K. Male., and J.H.T. Luong. 2006. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal. Chem. 77: 5504 – 5512. Jaynes, W.F., and J.W. Bigham. 1987. Charge reduction, octahedral charge, and lithium tretention in heated, Li-saturated smectites. Clays Clay Miner. 35: 440-448. John, S. A., and R.Ramaraj. 2004. Microenvironment effects on the electrochemical and photoelectrochemical properties of thionine loaded Nafion® films. J. Electroanal. Chem. 561: 119- 126. Johnston, D.H., C.C. Cheng, J.C. Katherine, and H.H. Thorp. 1994. Trans-dioxorhenium(V)-mediated electrocatalytic oxidation of DNA at indium tin- oxide electrodes: voltammetric detection of DNA cleavage in solution. Inorg. Chem. 31: 6388-6390. Johnston, D.H., C.G. Katherine, and H.H. Thorp. 1995. Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J. Am. Chem. Soc. 117: 8933-8938. Joiret, S., M. K., X. P. Nóvoa, M. C. Pérez., and H. Takenouti. 2002. Use of EIS, ring-disk electrode, EQCM and Raman spectroscopy to study the film of oxides formed on iron in 1 M NaOH. 24: 7- 15. Kalcher, K. 1990. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2: 419-.433. Kalcher, K., J.M. Kauffmann., J. Wang., I. Švancara., K. Vytras., C. Neuhold., and Z. Yang. 1995. Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990-1993 .Electroanalysis. 7: 5-.22. Komural, T., G.Y. Niu., T.Yamaguchi., and M. Asano. 2003. Redox and ionic-binding switched fluorescence of phenosafranine and thionine included in Nafion® films. Electrochim. Acta 48: 631- 639. Lai, E.K. W., P. D. Beattie, F.P. Orfino, E. Simon, and S. Holodcroft. Electrochemical oxygen reduction at composite films of Nafion®, polyaniline and Pt 1999. Electrochim. Acta 44: 2559 – 2569. Langmaier, J.Z. Samec, E. Samcova, P. Hobza, and D. Reha. 2004. Origin of difference between one-electron redox potentials of guanosine and guanine: Electrochemical and quantum chemical study. J. Phys. Chem. B 108 :15896–15899. Letaïef, S., P. Aranda, and E. Ruiz-Hitzky. 2005. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci. 28: 183-198. Lee, C., and F.C. Anson, 1992. Use of electrochemical microscopy to examine counterion ejection from Nafion coatings on electrodes. Anal. Chem. 64: 528- 533. Loranelle L.S., S.S. Jennifer, and A.N. Timothy .1996. Temporal and Spatial Analysis of Electrogenerated Ru(bpy)33+ Chemiluminescent Reactions in Flowing Streams. Anal. Chem. 68: 349-354. Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta 128: 1-18. Malyszko, J., E. Malyszko., E.R. Ferchichi., M. Kaczor. 1998. Kinetics of the electrochemical bromination of some unsaturated fatty acids by the rotating ring–disc electrode technique. Anal. Chem. Acta 376: 357- 364. Manceau, A., B. Lanson, V.A. Drits, D. Chateigner, W.P. Gates, J.Wu, D. Huo, and J.W. Stucki. 2000. Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal. Chemistry of oxidized reference nontronites. American Mineralogist. 85: 133-152. Martin, C.R., I. Rubinstein, and A.J. Bard, 1982. Polymer films on electrodes. 9. Electron and mass transfer in Nafion films containing tris(2,2''-bipyridine)ruthenium(2+) J. Am. Chem. Soc. 104: 4817-4824 Moore. C.M., N.L. Akers, A.D. Hill, Z.C. Johnson, and S.D. Minteer. 2004. Improving the environment for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides. Biomacromolecules. 5:1241-1247. Moravcova, S., and K. Bouzek. 2005. Modification and characterization of a novel composite material based on a Nafion membrane and polypyrrole. J. Electrochem. Soc. 152: A2080- A2088. Moretto, L.M., P. Bertoncello, and P. Ugo. 2005. Electrochemistry of cytochrome c incorporated in Langmuir–Blodgett films of Nafion® and Eastman AQ 55. Bioelectrochemistry 66: 29- 34. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrode-new trends. Appl. Clay Sci. 27: 159-177. Mugweru, A., and J.F. Rusling. 2002. Squarewave voltammetric detection of chemical DNAdamage with catalytic poly (4-vinylpyridine) -Ru(bpy)22+ films. Anal. Chem. 74: 4044–4049. Murray, R.W., A.G. Ewing., and R.A. Dust. 1987. Determination of trace levels of trimethylamine in air by gas chromatography/surface ionization organic mass spectrometry Anal. Chem. 59:379-382 Murray, R.W. 1992. Molecular Design of Electrode Surface. Techniques of Chemistry. 22: Navrátilová, Z., and P. Kula. 2003. Clay modified electrodes: present spplicstion and prospects. Electroanalysis. 15: 837-846. Niwa, O., M. Morita, and H. Tabei. 1994. Highly selective electrochemical detection of dopamine using interdigitated array electrodes modified with nafion/polyester lonomer layered film. Electroanalysis. 6: 237- 243. Palecek, E. 1960. Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature. 188: 656-657. Palecek, E. 1996. From polarography of DNA to microanalysis with nucleic acid-modified electrodes. Electroanalysis. 8: 7-14. Palecek, E., M. Fojta, and M.W. Tomschik, J. 1998. Electrochemical biosensors for DNA hybridization and DNA damage. Biosens. Bioelectron. 13: 621-628. Palecek, E., and M. Fojta. 2001. Detecting DNA hybridization and damage. Anal. Chem. 73: 74-83. Palecek, E., and F. Jelen. 2002. Electrochemistry of nucleic acids and development of DNA sensors, Crit. Rev. Anal. Chem. 3: 261–270. Popovic, N.D., and K.C. Johnson. 1998. A Ring-Disk Study of the competition between anodic oxygen-transfer and dioxygen-evolutionreactions. 70: 468-472. Pang, D.W., Y.P. Qi, Z.L. Wang, J.K. Cheng, and J.W. Wang. 1995. Electrochemical oxidation of DNA at a gold microelectrode. Electroanalysis. 7: 774-777. Reanney, D.C., P.C. Gowland, and J.H. Slater. 1983. Genetic interaction among microbial communities. In: Salter, J.H., Whittenbury, R., Wimpenny, J.W.T. (Eds.), Microbes in their Natural Environments. Cambridge University Press, Cambridge, pp. 379–421. Rubinstein, I., and A.J. Bard. 1981. Polymer films on electrodes. electrochemistry and chemiluminescence at Nafion-coated electrodes .J. Am. Chem. Soc. 103: 5007-5013. Rubinstein, I., C.R. Martin, and A.J. Bard, 1983. Electrogenerated chemiluminescent determination of oxalate. Anal.Chem.55: 1580-1582 u i ka, J., and E.H. Hansen. 1957. Flow injection analyses Part I. A new concept of fast continuous flow analysis. Anal. Chim. Acta 78: 145- 157. Sagberg, P., and W, Lund. 1982. Trace metal analysis by anodic-stripping voltammetry Effect of surface-active substances. Talanta 29: 457-460. Shi, M., and F.C. Anson, 1996. Rapid Oxidation of Ru(NH3)33+ by Os(bpy)33+ within Nafion Coatings on Electrodes. Langmuir 12: 2068- 2075. Shi, M., and F.C. Anson. 1997. Some Consequences of the Significantly Different Mobilities of Hydrophilic and Hydrophobic Metal Complexes in Perfluorosulfonated Ionomer Coatings on Electrodes. Anal. Chem. 69: 2653-2660. Sheng, R., F. Ni ,and T.M. Cotton. 1991. Determination of Purine Bases by Reversed-Phase High-Performance Liquid Chromatography Using Real-Time Surface-Enhanced Raman Spectroscopy. Anal. Chem. 63: 437.- 442. Solomon, D.H. 1968. Clay minerals as electron acceptors and/or electron donors in organic reaction. Clays Clay Miner, 16: 31-39. Steenken, S., and S.V. Jovanovic. 1997. How easily oxidizable is DNA – one-electron reduction potentials of adenosine and guanosine radicals in aqueous-solution. J Am Chem Soc. 119: 617-618. Subramanian, P., and A. Fitch. 1992. Diffusional transport of solutes through clay: Use of clay-modified electrodes. Environ. Sci. Technol. 26: 1775-1779. Sun, X., Y. Du., S. Dong., and E. Wang. 2005. Method for Effective Immobilization of Ru(bpy)32+ on an Electrode Surface for Solid-State Electrochemiluminescene Detection. Anal Chem. 77: 8166- 8169. Szalai, V.A., and H.H. Thorp. 2000. Electrocatalysis of guanine electron transfer: new insights form submillimeter carbon electrodes. J. Phys. Chem. 104: 6851–6859. Szentirmay, M.N. and C.R. Martin, 1984. Ion-exchange selectivity of Nafion films on electrode surfaces. Anal. Chem. 56: 1898-1902. Tansil, N.C., F. Xie, H. Xie, and Z Q. Gao. 2005.An ultrasensitive nucleic acid biosensor based on the catalytic oxidation of guanine by a novel redox threading intercalator. Chem. Commun. 1064–1066. Theng, B.K.G. 1971. Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390. Todd, B., J. Zhao, and G. Fleet. 1995. HPLC measurement of guanine for the determination of nucleic acids (RNA) in yeasts. J. Microbiol. Methods. 22: 1. Thorp, H.H., 2004.Electrocatalytic DNA oxidation. Top. Curr. Chem. 237 :159–181. Tsai, Y.C., S.C. Li., and J.M. Chen. 2005. Cast yhin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function. Langmuir. 21: 3653- 3658. Valentini, F., S. Orlanducci, M.L. Terranova, A. Amine, and G. Palleschi.2004. Carbon nanotubes as electrode materials for the assembling of newelectrochemical biosensors, Sens. Actuators B, Chem. 100: 117–125. Van Olphen, H., and J.J. Fripiat. 1979. Data handbook for clay minerals catalysts in preparation of model humic substances. Z. Pflanzenernaehr. Bodenkd. 140: 669-676. Vidotti, M., L.H. Dall’Antonia., E.P. Cintra., and S.I. Cordoba de Torresi. 2004. Electrochim Acta. Reduction of interference signal of ascorbate and urate in poly(pyrrole)-based ammonia sensors in aqueous solutions. 49: 3665- 3670. Waguespack, B.L., A. Lillquist, J.C. Townley, and D.R. Bobbitt, 2001. Evaluation of a tertiary amine labeling protocol for peptides and proteins using Ru(bpy)33+ -based chemiluminescence detection. Anal. Chem. Acta 441: 231- 241. Wang, B., and J.F. Rusling. 2003. Voltammetric sensor for chemical toxicity using [Ru(bpy)2poly(4-vinylpyridine)10Cl)]+ as catalyst in ultrathin films DNA damage from methylating agents and an enzyme-generated epoxide, Anal. Chem. 75 : 4229–4235. Wang, J., and L.D. Hutchins-Kumar. 1986 . Cellulose acetate coated mercury film electrodes for anodic stripping voltammetry. Anal. Chem. 58: 402- 407. Wang, J. 2002. Electrochemical nucleic acid biosensors. Analytica Chimica Acta 469: 63-71. Wang, J., L. Chen. and M. Chicharro. 1996. Anal.Chem. 319: 349- Wang, J. 1991. Modified electrodes for electrochemical sensor. Electroanalysis 3: 255- 259. Wang, J., M. Musameh., and Y. Lin. 2003. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensor. J. Am. Chem. Soc. 125: 2408 – 2409. Wang, Z.H., S.F. Xiao, and Y. Chen. 2005.Electrocatalytic and analytical response of beta-cyclodetrin incorporated carbon nanotubes-modified electrodes towards guanine. Electroanalysis 17: 2057–2061. Whiteley, L.D., and C.R. Martin. 1989. Ultramicroelectrode ensembles. comparison of experimental and theoretical responses and evaluation of electroanalytical detection limits. J. Phys. Chem. 93: 4650-4657. White, H.S., J. Leddy. And A.J. Bard, 1981. Polymer films on electrodes. 8. Investigation of charge-transport mechanisms in Nafion polymer modified electrodes. J. Am. Chem. Soc. 104: 4811-4817. Wiyaratn, W., S. Hrapovic, Y. Liu, W. Surareungchai, and J. H. T. Luong. 2005. Light-Assisted synthesis of Pt-Zn porphyrin nanocomposites and their use for electrochemical detection of organohalides. Anal. Chem. 77: 5742-5749. Yeager, H.J., A. Eisenberg. 1982. Perfluorinated lonomer Membranes. P. 1-6, 41-63. ACS Symp. Ser. NO. 180. Zen, J.M., and N.Y. 1995. Square-wave voltammetric determination of copper(II) with a Nafion–dimethylglyoxime mercury-film electrode Analyst 120: 511-515. Zen, J.M., S.H. Jeng, and H.J. Chen. 1996. Catalysis of the electroreduction of hydrogen peroxide by nontronite clay coatings on glassy carbon electrodes. J. Electroanal. Chem. 408: 157-163. Zen, J. M., S.H. Jeng, and H.J. Chen. 1996. Determination of Paraquat by Square-Wave Voltammetry at a Perfluorosulfonated Ionomer/Clay-Modified Electrode. Anal. Chem. 68: 498-502. Zen, J.M., and S.Y. Huang. 1994. Square-wave voltammetric determination of lead(II) with a Nafion/2,2-bipyridyl mercury film electrode. Anal. Chim. 296:77-86. Zen, J.M., F.S. Hsu, N.Y. Chi, S.Y. Huang, and M.J. Chung. 1995. Effect of model organic compounds on square-wave voltammetric stripping analysis at the Nafion/chelating agent mercury film electrodes Anal. Chim.Acta 310:407-417. Zen, J. M., and A. S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A- 211A. Zhang, L., and S. Dong. 2006. Anal. Chem. 18: 47-56. Zhou, L., J. Yang, C. Estavillo, J.D. Stuart, J.B. Schenkman., and J.F. Rusling. 2003. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films. J. Am. Chem. Soc. 125 : 1431–1436. Zhou, L., and J. F. Rusling. 2001.Detection of chemically induced DNA damage in Layered films by catalytic square wave voltammetry using Ru(bpy)32+. Anal. Chem. 73: 4780–4786.zh_TW
dc.description.abstract去氧核醣核酸是土壤微生物細胞的主要核心,而對去氧核醣核酸之偵測能反映出土壤微生物的特性。鳥糞嘌呤是去氧核醣核酸中最能表現出電化學特性的成分,故利用黏粒修飾電極偵測鳥糞嘌呤期望將來可應用於土壤微生物特性上的探討為本實驗研究之目的。本實驗研究使用環盤印刷電極搭配不同種類的黏土礦物,利用不同修飾方法所製成之黏粒修飾電極對鳥糞嘌呤偵測之探討。試驗結果指出,以Ru(bpy)32+ 與Nafion混合後修飾在黏粒電極上,對鳥糞嘌呤偵測之效果最好,且以流動注入系統在+1.2 V或是+1.0 V電位對不同濃度的鳥糞嘌呤偵測之穩定性效果很好。以此電極對( 50 μΜ– 1000 μM )鳥糞嘌呤之偵測,有一良好的線性關係(R2 > 0.990)。由三種黏粒修飾電極對鳥糞嘌呤的偵測效果可發現,高嶺石所製備的黏粒修飾電極在電流訊號值上為最大,此與鳥糞嘌呤氧化作用及吸附情形有關。在pH 7的背景環境中,鳥糞嘌呤的吸附主要發生於黏粒的破裂邊緣,故擁有較多邊緣電荷的高嶺石在對於鳥糞嘌呤偵測上具有最好效果。選用高嶺石修飾電極對已知鳥糞嘌呤濃度之去氧核醣核酸標準品作偵測,所測得之回收率高達90%以上,顯示此黏粒修飾電極對於鳥糞嘌呤之偵測,不僅可達到便利與快速之目的外,同時其提高往後對於菌種DNA偵測上的發展性,相對上也增加對土壤微生物特性上探討的視野。zh_TW
dc.description.abstractDeoxyribonucleic acid is the nucleus of soil microorganism's cell and the characteristic of soil microorganism can be identified by determining deoxyribonucleic acid. Guanine is a better electrochemical componment of deoxyribonucleic acid. The experimental is that determination of guanine using clay-modified electrode method can be applied on study of soil microorganism character. Guanine was determined by ring-disk electrode modified with different clay minerals and methods. The results indicated clay-modified electrode mofdified with mixture of Ru(bpy)32+ and Nafion had better determination for guanine and the stability of determination in different concentration of guanine are good at +1.2 V and +1.0 V, that also had a good line calibration curve (R2 > 0.990) in (50 μΜ - 1000 μM) . The result of determining guanine using three clay-modified electrodes and showed KGa-1 modified electrode had the best peak currents, due to oxidation and adsorption of guanine on clay mineral. At background solution of pH 7, guanine was adsorbed on broken edge. Kaolinite with more variable charge resulted in good determination for guanine. Recovery of guanine in standard deoxyribonucleic acid determined by KGa-1 modified electrode was 90%. In conclusion, the method of determining for guanine using clay-modified electrode could provided a fast, convenient, and economic determination for guanine, and that exhibited high potential for determination of DNA and identification of soil microorganism's character.en_US
dc.description.tableofcontents致謝 i 摘要 i 目次 iii 圖目次 vi 表目次 x 第一章 緒論 11 一、前言 11 二、DNA及偵測之文獻回顧 13 三、電化學分析法之簡介 18 (一)環盤電極間接偵測之原理 18 (二)試驗分析方法 21 1、伏安法(Cyclic Voltammetry) 21 2、安培法(Amperometry) 25 3、流動注入系統分析法(Flow Injection Analysis) 27 四、化學修飾電極 29 (一)修飾劑全氟磺酸聚合物(Nafion) 33 五、黏粒修飾電極 36 第二章 試驗部份 40 ㄧ、藥品 40 二、儀器設備 42 三、試劑配置方法 43 (二)修飾電極的製作 45 四、DNA 標準品 47 五、試驗方法 48 (一)循環伏安法 48 (二)、流動注入系統分析方法 48 第三章 結果與討論 50 一、鳥糞嘌呤偵測之催化反應 50 二、電極製作方式的探討 54 (一) Ru(bpy)32+/黏粒修飾層組合之探討 54 (二) 不同黏粒修飾層對於Ru(bpy)32+ 59 (三) Nafion / Clay修飾電極 62 (四) Nafion / Ru(bpy)32+混合修飾電極 62 三、流動注入系統偵測guanine 65 (一) 理想偵測電位探討 65 (二) 偵測理想流速探討 67 四、不同修飾電極偵測guanine 68 (一) 電位+1.2 V之電極再現性: 68 (二) 電位+1.0 V之電極再現性: 79 (三) 電位+1.2 V之偵測標準曲線: 89 (四) 電位+1.0 V之偵測標準曲線: 94 第四章 DNA sequence偵測 102 (一) +1.0 V上的偵測 103 (二) +1.2 V上的偵測 105 第五章 結論 107 第六章 未來展望 108 參考文獻 110 附錄一 126zh_TW
dc.subjectClay-modified Electrodesen_US
dc.titleElectroanalysis of Guanine Using Clay-modified Electrodesen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.openairetypeThesis and Dissertation-
Appears in Collections:土壤環境科學系
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.