Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2815
標題: 利用繞射光學元件於頭戴式立體虛擬顯示器之研究
Study of the head-mounted stereoscopic virtual display using the diffractive optical element
作者: 吳嘉賢
Wu, Chia-Hsien
關鍵字: 繞射光學元件;diffractive optical element (DOE);頭戴式立體虛擬顯示器;光導元件;光學投影系統;head-mounted stereoscopic virtual display;light guide member;optical projection system
出版社: 機械工程學系所
引用: [1] A. Bercker, “Miniature video display system”, United States Patent 4934773, 1987. [2] J. A. Cox, T. A. Fritz, T. Werner, “Application and demonstration of diffractive optics for head-mounted displays”, Proc. SPIE, Vol. 2218, p.32-40, 1994. [3] H. Hoshi, N. Taniguchi, H. Morishima, T. Akiyama, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry”, Proc. SPIE, Vol. 2653, p.234-242, 1996. [4] D. B. Corbin, “Stereo head mounted display using a single display device”, United States Patent 6271808, 2001. [5] T. Levola, V. Aaltonen, “Near-to-eye display with diffractive exit pupil expander having chevron design” , Journal of the SID, Vol. 16, No.8, p.857-862, 2008. [6] P. Äyräs, P. Saarikko, T. Levola, “Exit pupil expander with a large field of view based on diffractive optics”, Journal of the SID, Vol. 17, No.8, p.659-664, 2009. [7] P. Äyräs, P. Saarikko, “Near-to-eye display based on retinal scanning and a diffractive exit-pupil expander”, Proc. SPIE, Vol. 7723, 77230V-1 – 77230V-8, 2010. [8] Seiko Epson Corporation , http://www.epson.com [9] Sony Corporation, http://www.sony.net/ [10] P. St-Hilaire, S. A. Benton, M. Lucente, P. M. Hubel, “Color images with the MIT holographic video display”, Proc. SPIE, Vol. 1667, p.73-84, 1992. [11] G. E. Favalora, “Volumetric 3D displays and application infrastructure”, IEEE Computer Society, Vol. 38, No.8, p.37-44, 2005. [12] E. Hecht, “Optics”, Fourth Edition, Pearson Education, 2002. [13] D. C. O''Shea, T. J. Suleski, A. D. Kathman, D. W. Prather, “Diffractive Optics: Design, Fabrication, and Test”, SPIE Tutorial Texts in Optical Engineering Vol. TT62, 2003. [14] T. TOTANI, M. Takagi, A. Komatsu, T. Takeda, “Virtual image display device”, United States Patent 20120200937, 2012. [15] 李劭祈, “利用高分子穩固型液晶之多模式菲涅耳透鏡”, 國立中興大學機械工程學系碩士論文, 2010. [16] 林盟惟, “利用Mach-Zehnder干涉儀架構之3D立體投影機設計”, 國立中興大學機械工程學系碩士論文, 2011.
摘要: 
本研究提出將繞射光學元件(diffractive optical element, DOE)應用於頭戴式立體虛擬顯示器(head-mounted stereoscopic virtual display)系統上,透光式頭戴顯示器的光學系統主要以LCD、光導元件(light guide member)及光學投影系統(optical projection system)所組成,過去頭戴顯示器的光學投影系統至少需要三片以上的透鏡組合,因此我們以繞射光學元件搭配一片折射透鏡設計取代傳統以多片透鏡組成的光學投影系統,以此方式達到縮減頭戴顯示器的體積目標。本研究首先參考EPSON公司發售的頭戴式立體虛擬顯示器及其產品專利,以其光學系統架構作為本研究改良頭戴式立體虛擬顯示器之光學投影系統基礎,利用光學設計軟體ZEMAX的混和序列及非序列光線追跡模式,對本研究改良的頭戴式立體虛擬顯示器進行模擬及設計,並模擬參考專利的光學系統,將兩者的模擬結果做比較。接著提取本研究模擬優化後的繞射光學元件參數,設計製作繞射光學元件用的光罩圖形,以半導體製程的微影及蝕刻製程完成四階層的繞射光學元件,再對完成的繞射光學元件進行結構深度及繞射效率量測,元件的負一階繞射效率達到62.1%。將設計出的系統與EPSON公司的頭戴顯示器系統進行影像品質比較,再以空間頻率(spatial frequency)之解像能力評估頭戴顯示器系統的成像品質,實驗結果顯示以繞射光學元件搭配折射透鏡的光學投影系統能夠呈現一個完整的影像,以空間頻率測試系統的解像能力,能分辨的最高空間頻率為15 lp/mm。

This study proposes the application of the diffractive optical element (DOE) to the head-mounted stereoscopic virtual display system. The optical system of the transmissive head-mounted display (HMD) mainly consists of LCDs, light guide members and optical projection systems. In a conventional optical projection system, it requires at least three or more lenses. To achieve the target of reducing the volume of an HMD, we combined a DOE with a refractive lens as the optical projection system to replace the conventional design. First, we referred to the patent of EPSON HMD and used its optical system as the basic configuration in study. Comparing with the patent, this study designed and simulated the HMD by mixing sequential and non-sequential ray tracing mode of the optical software ZEMAX. Second, after simulation, we extracted the optimized parameters of the DOE to design the mask pattern which was used to produce the DOE. Third, we used the lithography and etching techniques to fabricate the four-level DOE and then measured the etch depth and diffraction efficiency of the DOE. The efficiency of negative first-order diffraction was 62.1%. Fourth, we compared our design with EPSON HMD and evaluated their image formation quality by using the resolving capability for different spatial frequencies. Finally, the experimental results showed the optical projection system of the DOE with a refractive lens could display an image. The highest spatial frequency that the system could resolve 15 lp/mm.
URI: http://hdl.handle.net/11455/2815
其他識別: U0005-2608201313413600
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.