Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28159
標題: 黏土礦物對土壤細菌生長影響之研究
Effects of Clay Minerals on the Growth of Soil Bacteria
作者: 林季融
Lin, Ji-Rong
關鍵字: Clay Minerals;細菌;Bacteria;Phosphatase;Electroanalysis;磷酸酯酶電化學分析
出版社: 土壤環境科學系所
引用: 李國鏞、游若荻。1988。微生物學。台北: 華香園出版社。 施桂英。1992。固定於幾丁聚醣和蒙特石之酸性磷酸酯酶在土壤中之行為。 國立台灣大學農業化學所碩士論文。 鄭世堃。2007。黏土礦物層面電荷特性之電化學分析。國立中興大學土壤環境科學所碩士論文。 吳宇鑫、陳鴻基、曾志明。2007。利用普魯士藍修飾電極法探討固定態銨的 釋放速率。中華農學會報8: 1-20。 莊作權、陳鴻基。1993。土壤黏粒淨表面電荷在銨固定上的影響。中國農業 化學會誌 31(6): 703-716。 莊作權、陳鴻基。1994。膨脹性黏土礦物表面電荷的非均勻性對銨固定作用 的影響。中國農業化學會誌 32(5): 522-532。 陳鴻基、李國欽、莊作權。1995。利用粘粒修飾電極探討巴拉刈在粘土礦物 膜層中的移動性。中華民國雜草學會會刊16: 1-13。 陳鴻基、莊作權。2005。有機質肥料對土壤中氮素轉化與移動上的影響。 土壤與環境 8: 47-72。 陳鴻基、曾志明。2003a。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動 性的影響。興大農林學報52: 1-19。 陳鴻基、曾志明。2003b。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活 性的影響。中華農學會報4: 429-446。 陳鴻基、楊庭豪、曾志明。2003。利用方波伏安法探討不同離子對巴拉刈 在土壤中移動的影響。興大農林學報 52(1): 19-31。 楊庭豪、陳鴻基、曾志明。2003。利用網版印刷碳電極探討巴拉刈在黏土 礦物表面上的鍵結。土壤與環境6: 193-206。 鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類 之表面電荷特性。中華農學會報8: 336-354。 榮興民、黃巧雲、陳雯莉、梁巍。2008。土壤礦物與微生物相互作用的機 理及其環境效應。生態學報28(1): 376-387 Al-Niemi, T. S., M. L. Kahn, and T. R. McDermott. 1997. P metabolism in the bean-Rhizobium tropici symbiosis. Plant physiol. 113: 1233-1242. Ams, D. A., J. B. Fein, H. Dong, and P. A. Maurice. 2004. Experimental Measurements of the Adsorption of Bacillus subtilis and Pseudomonas mendocina Onto Fe-Oxyhydroxide-Coated and Uncoated Quartz Grains. Geomicrobiol. J. 21. 511-519. Aufreiter, S., R. G.. V. Hancock, W. C. Mahaney, A, Stambolic-Robb, and K. Sanmugadas. 1997. Geochemistry and mineralogy of soils eaten by humans. Int. J. Food Sci. Nut. 48: 293-305. Bard, A. J., and L. R. Faulkner. 1980. Electrochemical methods. Wiley and Sons, New York. Bianco, P. 2002. Protein modified and membrane electrodes: strategies for the development of biomolecular sensors. Rev. Mol. Biotechnol. 82: 393-409. Boyd, S. A., and M. M. Mortland. 1990. Enzyme interactions with clays and clay-organic matter complexes. In J.-M. Bollag and G. Stotzky (eds.) Soil Biochemisrty 6. Marcel Dekker, New York, USA. p.1-20. Brabich, H., and G. Stotzky. 1979. Abiotic factors affecting the toxicity of lead to fungi. Appl. Environ. Microbiol. 38: 506-513. Brahimi, B., P. Labbe, and G. Reverdy. 1989. Electrochemical behavior of clay modified electrodes in the presence of cationic surfactant. J. Electroanal. Chem. 267: 343-349. Brahimi, B., P. Labbe, and G. Reverdy. 1992. Study of the adsorption of cationic surfactants on aqueous laponite clay suspensions and laponite clay modified electrodes. Langmuir. 8: 1908-1918. Burns, R.G. 1978. Enzymes activity in soil: some theoretical and practical considerations. I. The soil environment. In R.G. Burns (eds.) Soil enzymes. Academic press Inc., London, UK. p.299-305. Burns, R.G. 1982. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil biology and biochemistry 14: 423-427. Burns, R.G. 1986. Interactions of enzymes with soil mineral and organic colloids.In P.M. Huang and M. Schnitzer (eds.) Interactions of Soil Minerals with Natural Organics and Microbes, Soil science society of America, Madison,USA. Campo Dall’Orto, V., J. M. Vago, R. R. Carballo, and I. N. Rezzano. 2005. Comparison of tyrosinase biosensor and colorimetric method for polyphenol analysis in different kinds of Teas. Anal. Lett. 38: 19-33. Carrasco, M. S., J. C. Rad, and S. Gonzáles-Carcedo. 1995. Immobilization of alkaline phosphatase by sorption on Na-sepiolite. Biore. Technol.51:175-181. Cássia Silva Luz, R., F. S. Damos, A. B. Oliveira, J. Beck, and L. T. Kubota. 2004. Voltammetric determination of 4-nitrophenol at a lithium tetracyanoethylenide (LiTCNE) modified glassy carbon electrode. Talanta 64:935–942. Cervini-Silva, J., J. Wu,J. W. Stucki, and R. A. Larson. 2000. Adsorption kinetics of pentachloroethane in iron-bearing smectites. Clays Clay Miner.48:132-138. Chang, M. Y., and R. S. Juang. 2004. Stability and catalytic kinetics of acid phosphatase immobilized on composite beads of chitosan and activated clay. Process Bioche. 39: 1087-1091. Chenu, C. 1993. Clay- or sand-polysaccharides associations as models for the interface between microorganisms and soil: water-related properties and microstructure. Geoderma 56: 143-156. Cosnier, S., and K. Le Lous. 1996a. A new strategy for the construction of amperometric dehydrogenase electrodes based on laponite gel-methylene blue polymer as the host matrix. J. Electroanal. Chem. 406: 243-246. Cosnier, S., and K. Le Lous. 1996b. Amperometirc detection of pyridine nucleotide via immobilized viologen-accepting pyridine nucleotide oxidoreductase or immobilized diaphorase. Talanta 43: 331-337. Cosnier, S., M. Fontecave, C. Innocent, and V. Niviere. 1997a. An original electroenzymatic system: flavin reductase-riboflavin for the improvement of dehydrogenase-based biosensors. Application to the amperometric detection of lactate. Electroanalysis 9: 685-688. Cosnier, S., C. Gondran, A. Senillou, M.Grätzel, and N. Vlachopoulos. 1997b. Mesoporous TiO2 films: new catalytic electrode materials for fabricating amperometric biosensors based on oxidases. Electroanalysis 9: 1387-1392. Cosnier, S., C. Innocent, L. Allien, S. Poitry, and M. Tsacopoulos. 1997c. An electrochemical method for making enzyme microsensors. Application to the detection of dopamine and glutamate. Anal. Chem. 69: 968-971. Cosnier, S., F. Lambert, and M. Stoytcheva. 2000. A composite clay glucose biosensor based on an electrically connected HRP. Electoanalysis.12: 356-360. Courvoisier, E., and S. Dukan. 2009. Improvement of Escherichia coli growth by kaolinite. Appl. Clay Sci.44: 67-70. Davis, R. J., and W. R. Heald. 1964. Formation of clay mineral-rhizobial polysaccharide gels and their measurement by torque viscometry.Soil Sci. Soc. Am. J. 28:203-205. Diaz, T. G., A. G. Cabanillas, and F. Salinas. 2000. Square-wave and differential pulse oxidative voltammetric determination of diquat and paraquat in alkaline medium. Electroanalysis 12: 616-621. Deo, N., K.A. Natarajan, P. Somasundaran. 2001. Mechanisms of adhesion of Paenibacillus polymyxa onto hematite, corundum and quartz. Int. J. Miner. Process. 62:27–39. Dixon, J. B., and D.G. Schulze. 2002. Soil mineralogy with environmental applications. Madison: Soil Sci. Soc. Amer., Inc. El Mhammedi, M. A., M. Achak, M. Bakasse, and A. Chtainia. 2009. Electrochemical determination of para-nitrophenol at apatite-modified carbonpaste electrode: Application in river water samples. J Hazard. Mater. 163:323–328 Enea, O., and A. J. Bard. 1986. Photoredox reactions at semiconductor particles incorporated into clays. CdS and ZnS + CdS mixtures in colloidal montmorrilonite suspensions. J. Phys. Chem. 90: 301-306. England, L. S., H. Lee, and J. T. Trevors. 1993. Bacterial survival in soil: effect of clays and protozoa. Soil Biol. Biochem. 25: 525-531. Falaras, P., and D. Petridis. 1992. Incorporation of anionic species in organoclay-modified electrodes. J. Electroanal. Chem. 337: 229-239. Falaras, P., and F. Lezou. 1998. Electrochemical behavior of acid activated montmorillonite modified electrodes. J. Electroanal. Chem. 455: 169-179. Fitch, A. 1990. Clay modified electrodes : a review. Clay and Clay Miner. 38: 391-400. Fitch, A., and R. J. Krzysik. 1994. Multisweep cyclic voltammetric studies on the effect of charge on diffusion and sorption processes of ML3n+ chelates at clay-modified electrodes. J. Electroanal. Chem. 379: 129-134. Fitch, A., J. Du, H. Gan, and J. W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays and Clay Miner. 43: 607-614. Fomina, M. and G. M. Gadd. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol. Res.106 (1): 107-117. Galarneau, A., A. Barodawalla, and T. J. Pinnavaia. 1995. Porous clay heterostructures formed by gallery-templated synthesis. Nature. 374: 529-531. GenomeNet.http://www.genome.jp/ Ghosh, P. K. and A. J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Gomes, S. A. S. S., J. M. F. Nogueira, and M. J. F. Rebelo. 2004. An amperometric biosensor for polyphenolic compounds in red wine. Biosens. Bioelectron. 20: 1211-1216. Haskaa, G., 1981. Activity of bacteriolytic enzymes adsorbed to clays. Microb. Ecol. 7:331-341. Heijnen, C. E., J. Postma, and J. A. Van Veen. 1990. The significance of artificially formed and originally present protective microniches for the survival of introduced bacteria in soil. Problemy Pochvovedeniye 3: 88-93. Honeychurch, K. C., and J. P. Hart. 2007. Voltammetric behavior of p-Nitrophenol and its trace determination in human urine by liquid chromatography with a dual reductive mode electrochemical detection system. Electroanal.19(21):2176-2184. Hu, N., and J. F. Rusling. 1991. Surfactant-intercalated clay films for electrochemical catalysis. Reduction of trichloroacetic acid. Anal. Chem. 63:2163-2168. Huang, P. M. 2008. Soil physical-chemical-biological interfacial interactions: An overview. In Huang, Q., P. M. Huang, and A. Violante (eds.) Soil Mineral--microbe-organic Interactions:Theories and Applications. Springer-Verlag, Berlin, Germany. Pp.11-14. Huang, Q., W. Liang, and P. Cai. 2005.Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol. Colloids and Surfaces B: Biointer 45:209-214. Jaynes, W. F., and J. M. Bigham. 1986. Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor. Clays Clay Miner. 34: 93-98. Jaynes, W. F., and J. M. Bigham. 1987. Charge reduction, octahedral charge, and lithium tretention in heated, Li-saturated smectites. Clays Clay Miner. 35: 440-448. Joo, P. 1990. Electrochemistry of dye- and surfactant-incorporated montmorillonite-modified electrodes. Colloids and Surfaces. 49: 29-39. Joo, P. 1998. Interfacial electrochemistry of colloid-modified electrodes. Colloids Surfaces A: Physicochem. Eng. Aspects 141: 337-346. Joo, P., and A. Fitch. 1996. Ionic and molecular transport in hydrophobized montmorillonite films: An electrochemical survey. Environ. Sci. Technol. 30: 2681-2686. Joo, P., A. Fitch, and S. H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31: 2186-2192. Kim, J. W., H. Dong, J. Seebaugh, S. W. Newell, and D. D. Ebert. 2004. Role of microbes in the smectite-to –illite reaction.Science 303:830-832. Kim, J. W., Y. Furukawa, H. Dong, and S. W. Newell. 2005. The effect of microbial Fe(III) reduction on smectite flocculation. Clays and clay minerals: 53(6) 572-579. King, R. D., D. G. Nocera, and T. J. Pinnavaia. 1987. On the nature of electroactive sites in clay-modified electrodes. J. Electroanal. Chem. 236: 43-53. Kostka, J. E., E. Haefele, R. Viehweger, and J.W. Stucki. 1999. Respiration and dissolution of iron(III)-containing clay minerals by bacteria.Environ. Sci. Technol.33(18):3127-3133. Kula, P., Z. Navrátilová, P. Kulová, and M. Kotoucek. 1999. Sorption and determination of Hg(II) on clay modified carbon paste electrodes. Anal.Chim. Acta 385: 91-101. Lavie, S., and G. Stotzky. 1986. Adhesion of the clay minerals montmorillonite, kaolinite and attapulgite reduce of Histoplasma capsulatum. Appl. Environ Microbiol 51(1): 65-73. Lei, C., U. Wollenberger, C. Jung, and F. W. Scheller. 2000. Clay-bridged electron transfer between cytochrome P450cam and electrode. Biochem. Biophys. Res. Commun. 268: 740-744. Letaïef, S., P. Aranda, and E. Ruiz-Hitzky. 2005. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci. 28: 183-198. Lotareva, O. V., and A. A. Prozorov. 2000. Effect of the clay minerals montmorillonite and kaolinite on the genetic transformation of competent Bacillus subtilis cells. Microbiol. 69(5):571-574. Lojou, E., and P. Bianco. 2006. Layer-by-layer assemblies of montmorrilonite and bacterial cytochromes for bioelectrocatalytic devices. Electroanalysis. 18: 2426-2434. Lupu, S., C. Leteb, M. Marin, N. Totir, P. C. Balaure. 2009. Electrochemical sensors based on platinum electrodes modified with hybrid inorganic–organic coatings for determination of 4-nitrophenol and dopamine.Electrochim. Acta 50:1932-1938. Macha, S. M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Manceau, A., B. Lanson, V. A. Drits, D. Chateigner, W. P. Gates, J. Wu, D. Huo, and J. W. Stucki. 2000. Oxidation-reduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites. American Mineralogist 85: 133-152. Manisankar, P., G. Selvanathan, and C. Vedhi. 2006. Determination of pesticides using heteropolyacid montmorillonite clay-modified electrode with surfactant. Talanta 68: 686-692. Mbouguen, J. K., E. Ngameni, and A. Walcarius. 2007. Quaternary ammonium functionalized clay film electrodes modified with polyphenol oxidase for the sensitive detection of catechol. Biosensors and Bioelectronics 23: 269-275. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Mousty, C., S. Consnier, D. Shan, and S. Mu. 2001. Trienzymatic biosensor for the determination of inorganic phosphate. Anal. Chim. Acta. 443: 1-8. Mousty ,C., S. Cosnier, M. S. Lopez, E. Lopez-cabarcos, and B. Lopez-Ruiz. 2007. Rutin determination at an amperometric biosensor. Electroanalysis. 19: 253-258. Moura, R. S., J. F. Martín, A. Martín, and P. Liras. 2001. Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus. Microbiology 147: 1525–1533. Murray, H. H. 2000. Traditional and new applications for kaolin, smectite, and Palygorskite: a general overview. Appl. Clay Sci. 17: 207-221. Navrátilová, Z., and P. Kula. 2003. Clay modified electrodes: present applicationand prospects. Electroanalysis. 15: 837-846. Newman, A. C. D., and G. Brown. 1987. The chemical constitution of clays. In“ Chemistry of Clays and Clay Minerals”, ed. A. C. D. Newman, pp. 1-128.New York: John Wiley & Sons, Inc. Ngameni, E., I. K. Tonlé, J. T. Apohkeng, R. G.. B. Bouwé, A. T. Jieumboué, and A. Walcarius. 2006. Permselective and preconcentration properties of a surfactant-intercalated clay modified electrode. Electroanalysis 18: 2243-2500. Osa-Afiana, L. O., and M. Alexander. 1982. Clays and survival of Rhizobium in soil during desiccation. Soil Sci. Soc. Am. J.46:285-288. Overcash, M. R., A. L. McPeters, E. J. Dougherty, and R. G. Carbonell. 1991. Diffusion of 2,3,7,8-tetrachlorodibenzo-p-dioxin in soil containing organic solvents. Environ. Sci. Technol. 25: 1479-1485. Pecorari, M., and P. Bianco. 1998. Ion-exchange voltammetry of cationic species at membrane clay-modified electrodes. Electroanalysis. 10: 181-186. Petridis, D., P. Falaras, and T. J. Pinnavaia. 1992. Self-assembly of ion-paired electron-transfer centers in a clay-modified electrode. Inorg. Chem. 31: 3530-3533. Probstein, R. F., and R. E. Hicks. 1993. Removal of contaminants from soils by electric fields. Science 260: 498-503. Qian, D. I., C. Nakamura, S. O. Wenk, H. Ishikawa, N. Zorin, and J. Miyake. 2002. A hydrogen biosensor made of clay, poly (butylviologen) and hydrogenase sandwiched on a glass carbon electrode. Biosens. Bioelectron. 17: 789-796. Quisel, J. D., D. D. Wykoff, and A. R. Grossman. 1996. Biochemical Characterization of the Extracellular Phosphatases Produced by Phosphorus-Deprived Chlamydomonas reinhardtii. Plant Physiol. 111: 839-848. Quiquampoix, H., and R. G. Burns. 2007. Interactions between proteins and soilmineral surfaces: environmental and health consequences. Elements.3:401-406. Rijnaarts, H. H. M., W. Norde, E. J. Bouwer, J. Lyklema, and A. J. B. Zehnder. 1995. Reversibility and mechanism of bacterial adhesion.Colloids Surf. B: Biointerfaces 4 (1): 5~22. Rong, D., Y. I. Kim, and T. E. Mallouk. 1990. Electrochemistry and photoelectrochemistry of pillared clay-modified-electrodes. Inorg. Chem. 29: 1531-1535. Rong, X., Q. Huang, and W. Chen. 2007. Microcalorimetric investigation on the metabolic activity of Bacillus thuringiensis as influenced bykaolinite, montmorillonite and goethite. Apply. Clay Sci.38:97-103. Rosenzweig, W. D., and G. Stotzky. 1979. Influence of environmentalfactors on antagonism of fungi by bacteria in soil: clay minerals and pH. Appl. Environ. Microbiol. 38: 1120.1126. Rosenzweig, W. D., and G. Stotzky. 1980. Influence of environmentalfactors on antagonism of fungi by bacteria in soil: nutrient levels Appl. Environ. Microbiol. 39: 354-360. Sallez, Y., P. Bianco, and E. Lojou. 2000. Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes: a model for the interaction between proteins and soils. J. Electroanal.Chem. 493: 37-49. Scheller, F. W., U. Wollenberger, C. Lei, W. Jin, B. Ge, C. Lehmann, F. Lisdat, and V. Fridman. 2002. Bioelectrocatalysis by redox enzymes at modified electrodes. Rev. Mol. Biotechnol. 82: 411-424. Shan, D., S. Cosnier, and C. Mousty. 2003a. HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection. Anal. Lett. 36: 909-922. Shan, D., S. Cosnier, and C. Mousty. 2003b. Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal. Chem. 75: 3872-3879. Shan, D., C. Mousty, S. Cosnier, and S. Mu. 2003c. A new polyphenol oxidase biosensor mediated by Azure B in laponite clay matrix. Electroanalysis 15: 1506-1512. Shan, D., C. Mousty, and S. Cosnier. 2004. Subnanomolar cyanide detection at polyphenol oxidase/anionic clay biosensors. Anal. Chem. 76: 178-183. Shapiro, A. P., and R. F. Probstein. 1993. Removal of contaminants from saturated clay by electroosmosis. Environ. Sci. Technol. 27: 283-291. Stein, J. A., and A. Fitch. 1996. Effect of clay type on the diffusional properties of a clay-modified electrode. Clays and Clay Miner. 44: 381-392. Stevenson, F. J. 1982. Humus chemistry. John Wiley and Sons, New York. Stotzky, G. 1966a. Influence of clay minerals on microorganisms: II .Effect of various clay species, homoionic clays, and other particles on bacteria. Can . J. Microbiol. 12:831-848. Stotzky, G. 1966b. Influence of clay minerals on microorganisms: III. Effectof particle size cation exchange capacity , and surface area on bacteria. Can. J. Microbiol. 12: 1235-1246. Stotzky, G. 1974. Activity, ecology, and population dynamics of microorganisms in soil; p. 57-135. In A. I. Laskin and H. Lechevalier (ed.) Microbial ecology. Chemical Rubber Co., Cleveland. Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In P. M. Huang and M. Schnitzer (ed.) Interaction of soil minerals with natural organics and microbes. Spec. Publ. No.17. p.305-428. Soil Sci. Soc. Am., Madison, Wis. Stotzky, G., and L. T. Rem. 1966. Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria. Can . J. Microbiol. 12: 547-563. Stucki, J. W., and C. B. Roth. 1976. Interpretation of infrared spectra of oxidized and reduced nontronite. Clay. Clay Miner.24:293-296. Subramanian, P., and A. Fitch. 1992. Diffusional transport of solutes through clay: Use of clay-modified electrodes. Environ. Sci. Technol. 26: 1775-1779. Sundaram, P. V. and E. M. Crook. 1971. Preparation and properties of solid-supported urease. Biochem. Cell Biol. 49(12): 1388–1394. Švegl, I. G., M. Kolaz, B. Ogorevc, and B. Pihhar. 1998. Vermiculite clay mineral as an effective carbon paste electrode modifier for the preconcentration and voltammetric determination of Hg(II) and Ag(II) ions. Fresenius J. Anal. Chem. 361: 358-362. Tabatabai, M. A., and J. M. Bremner.1969. Use of p-nitrophenol phosphate for assay of soil phosphatase activity. Soil Biochem. 1:301-307. Tietjen, T., and R. G. Wetzel. 2003. Extracellular enzyme-clay mineral complexes:Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquatic Ecology 37: 331-339. Van Loosdrecht, M. C. M., J. Lyklema, W. Nord., and A. J. B. Zehnder. 1990. Influence of interface on microbial activity. Microbiol. Rev. 54(1):75-87. Van Olphen, H., and J. J. Fripiat. 1979. Data handbook for clay minerals and other non-metallic minerals. Oxford, England: Pergamon Press. Vianello, F., S. Ragusa, M. T. Cambria and A. Rigo. 2006. A high sensitivityamperometric biosensor using laccase as biorecognition element. Biosens. Bioelectron. 21: 2155-2160. Vincent, J. M. 1970. A Manual for the Practical Study of Root – Nodule Bacteria. IBP Handbook No.15, Black Well Sci., Oxford, Great Bertain. Walcarius, A., and L. Lamberts. 1996. Square wave voltammetric determination of paraquat and diquat in aqueous solution. J. Electroanal. Chem. 406: 59-68. White, J. L. 1971. Interpretation of infrared spectra of soil minerals. Soil Sci. 112: 22-31. White, J. L., and C. B. Roth. 1986. Infrared spectromotry. In “Methods of Soil Analysis. PartΙ. Physical and mineralogical methods (2nd ed.)”, ed. A. Klute, p. 291-330. Madison, WI: Amer. Soc. Agron. Zen, J. M., and C. W. Lo. 1996. A glucose sensor made of an enzymatic clay modified electrode and methyl viologen mediation. Anal. Chem. 68: 2635-2640. Zen, J. M., and A. S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A-211A. Zhao, F., L. Liu, F. Xiao, J. Li, R. Yan, S. Fan, and B. Zeng. 2007. Sensitive voltammetric response of p-Nitroaniline on single-wall carbon nanotube-ionic liquid gel modified glassy carbon electrodes. Electroanal. 19 (13):1387 – 1393. Zhao, X., Z. Mai, X. Kang, and X. Zou. 2008. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on clay-chitosan-gold nanoparticle nanocomposite. Biosensors and Bioelectronics. 23: 1032-1038. Zobell, C. E. 1943. The effect of soilid surfaces upon bacterial activity. Bacteriol. 46(1): 39-56. Zurdo-Piñerio, J. L., E. Velázquez, M. J. Lorite, G. Brelles-Mariño, E. C .Schröder, E. J. Bedmar, P. F. Mateos, and E. Martínez-Molina. 2004. Identification of fast-growing Rhizobia nodulating tropical legumes from Pureto Rico as Rhizobium gallicum and Rhizobium tropici. Syst. Applied Microbiolo. 27: 469-477.
摘要: 
The ecology of soil bacterium is apparently affected by clay minerals. To understand the effect and to find an efficient way of detecting the characteristics of bacterium, we studied the interaction between different clay minerals and soil bacteria. We incubated Rhizobium tropici CC-BL6 with three representative soils in Taiwan (Tali, Shiushui, Wutso) and three standard clay minerals [Ferruginous smectite (SWa-1), Montmorillonite (SWy-1), Kaolinite (KGa-1)] from Clay Minerals Society Repository, University of Missouri, Columbia, USA. The results indicated that the CC-BL6 extracellular phosphatase activity was higher due to the cell numbers increased. The order of cell numbers of soil clays was Tali > Shiushui > Wutso, and the standard clay minerals was SWa-1 >SWy-1 >KGa-1. Tali clays containing more montmorillonite performed better on the growth and phosphatase secretion of CC-BL6. Extracellular phosphatase adsorptive experiment of clay minerals indicated SWa-1 had higher enzyme activity than the control group, SWy-1 and KGa-1 at 30 and 70 minutes. But at the 160 minutes, the enzyme activity of SWa-1 treatment group was the lowest of all. Six clay minerals [SWa-1, SWy-1, KGa-1, Hectorite (SHCa-1), Vermiculite(VTx-1), Palygorskite (PFl-1)] were prepared for double layer (Clay-Clay) and triple layer (Clay-Bacteria-Clay) modified screen printed carbon electrode, we used Fe(CN)63-and Ru(NH3)63+ as model analytes.
The results clearly indicate the difference of electrochemical behavior between Ru(NH3)63+ and Fe(CN)63- in presence/absence of CC-BL6 in six clay-modified electrodes. Overall, the Fe(CN)63- model analyte could reveal more electrochemical character of CC-BL6 than that of Ru(NH3)63+. Palygorskite (PFl-1) shows the best resolved characteristics of CC-BL6 in clay-modified electrodes. Electroanalytic method may be applied to study bacteria characteristic and interaction between bacteria and clay minerals in future.

土壤中細菌的生長受黏土礦物種類的影響很大,瞭解其影響性有需探討不同黏土礦物與細菌間的交互作用,以及能以較迅速方便的方法來探討細菌生長上的特性。以Rhizobium tropici CC-BL6和三種台灣代表性土壤(大里系、秀水系、吳厝系),與三種得自美國黏土礦物學會的標準黏土礦物[多鐵蒙特石(SWa-1)、鈉蒙特石(SWy-1)、高嶺石(KGa-1)]進行孵育試驗,結果顯示菌落數與細菌的胞外磷酸酯酶成正比,土壤黏土礦物的菌落數:大里系>秀水系>吳厝系,標準黏土礦物的菌落數:SWa-1>SWy-1>KGa-1。大里系黏土礦物含有較多蒙特石,其對於細菌的生長與細菌所分泌出之磷酸酯酶活性上比較良好的表現。在細菌胞外磷酸酯酶與黏土礦物吸附的試驗結果顯示: SWa-1在第30分鐘與第70分鐘的磷酸酯酶活性高於對照組、SWy-1和KGa-1,而在第160分鐘時磷酸酯酶活性降至最低。經由以六種標準黏土礦物[SWa-1、SWy-1、KGa-1、水輝石(SHCa-1)、蛭石(VTx-1)與坡縷石(PFl-1)]修飾雙層電極(Clay-Clay)與黏土礦物-R. tropici CC-BL6菌液共同修飾的三明治電極(Clay-Bacteria-Clay),用以偵測兩種電化學活性物質Fe(CN)63-與Ru(NH3)63+,發現Fe(CN)63-比Ru(NH3)63+ 較能顯現出細菌存在於黏粒修飾電極中的電化學特性。不同掃描速率之下,在循環伏安圖上有明顯的差異,其中以Fe(CN)63-所表現的差異性比Ru(NH3)63+較能指出菌體的特性,且PFl-1在有、無細菌存在時,於5 mV/s掃描速率下之Fe(CN)63-伏安圖的差異性最大,最能表現出黏粒菌體修飾電極在細菌特性鑑別上的可行性。未來利用電化學方法在細菌特性與細菌和黏土礦物交互作用上的探討應具發展潛勢。
URI: http://hdl.handle.net/11455/28159
其他識別: U0005-0405200910225100
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.