Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2816
DC FieldValueLanguage
dc.contributor吳嘉哲zh_TW
dc.contributor.author利文廷zh_TW
dc.contributor.authorLi, Wen-Tingen_US
dc.contributor.other機械工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-05T11:43:59Z-
dc.date.available2014-06-05T11:43:59Z-
dc.identifierU0005-2808201323362400en_US
dc.identifier.citation1. J. R. Harris, M. E. Lippman, U. Veronesi, and W. Willett, "Breast cancer," New England Journal of Medicine, vol. 327, pp. 319-328, 1992. 2. M. B. Sporn, "The war on cancer," The Lancet, vol. 347, pp. 1377-1381, 1996. 3. D. G. Spiller, C. D. Wood, D. A. Rand, and M. R. White, "Measurement of single-cell dynamics," Nature, vol. 465, pp. 736-745, 2010. 4. R. N. Zare and S. Kim, "Microfluidic platforms for single-cell analysis," Annual review of biomedical engineering, vol. 12, pp. 187-201, 2010. 5. R. M. Johann, "Cell trapping in microfluidic chips," Analytical and Bioanalytical Chemistry, vol. 385, pp. 408-412, 2006. 6. K. Kim, X. Liu, Y. Zhang, and Y. Sun, "Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback," Journal of Micromechanics and Microengineering, vol. 18, p. 055013, 2008. 7. J. Y. Park, M. Morgan, A. N. Sachs, J. Samorezov, R. Teller, Y. Shen, K. J. Pienta, and S. Takayama, "Single cell trapping in larger microwells capable of supporting cell spreading and proliferation," Microfluid Nanofluidics, vol. 8, pp. 263-268, 2010. 8. M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, "A microfluidic-based hydrodynamic trap: design and implementation," Lab on a Chip, vol. 11, pp. 1786-1794, 2011. 9. H. Kortmann, F. Kurth, L. M. Blank, P. S. Dittrich, and A. Schmid, "Towards real time analysis of protein secretion from single cells," Lab on a Chip, vol. 9, pp. 3047-3049, 2009. 10. E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksor, and A. Graneli, "A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning," Lab on a Chip, vol. 10, pp. 617-625, 2010. 11. K. Zhang, L.-B. Zhao, S.-S. Guo, B.-X. Shi, T.-L. Lam, Y.-C. Leung, Y. Chen, X.-Z. Zhao, H. L. Chan, and Y. Wang, "A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells," Biosensors and Bioelectronics, vol. 26, pp. 935-939, 2010. 12. C.-H. Chuang, C.-H. Wei, Y.-M. Hsu, H.-S. Huang, and F.-B. Hsiao, "Impedance sensing of bladder cancer cells based on a single-cell-based DEP microchip," in Sensors, 2009 IEEE, 2009, pp. 943-947. 13. L.-S. Jang and M.-H. Wang, "Microfluidic device for cell capture and impedance measurement," Biomed Microdevices, vol. 9, pp. 737-743, 2007. 14. M. Valentinuzzi, "Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. First section: general concepts," Critical reviews in biomedical engineering, vol. 24, p. 223, 1996. 15. M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, and L. P. Lee, "A single cell electroporation chip," Lab on a Chip, vol. 5, pp. 38-43, 2005. 16. T. Tsong and K. Kinosita Jr, "Use of voltage pulses for the pore opening and drug loading, and the subsequent resealing of red blood cells," Bibliotheca haematologica, pp. 108-114, 1984. 17. S. Ho, G. Mittal, and J. Cross, "Effects of high field electric pulses on the activity of selected enzymes," Journal of food engineering, vol. 31, pp. 69-84, 1997. 18. G. L. Prasanna and T. Panda, "Electroporation: basic principles, practical considerations and applications in molecular biology," Bioprocess engineering, vol. 16, pp. 261-264, 1997. 19. Q. Liu, J. Yu, L. Xiao, J. C. O. Tang, Y. Zhang, P. Wang, and M. Yang, "Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays," Biosensors and Bioelectronics, vol. 24, pp. 1305-1310, 2009. 20. G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006. 21. H. Andersson and A. van den Berg, "Microtechnologies and nanotechnologies for single-cell analysis," Current Opinion in Biotechnology, vol. 15, pp. 44-49, 2004. 22. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, and D. Heldsinger, "An integrated nanoliter DNA analysis device," Science, vol. 282, pp. 484-487, 1998. 23. S. Lee and S. Lee, "Micro total analysis system (μ-TAS) in biotechnology," Applied Microbiology and Biotechnology, vol. 64, pp. 289-299, 2004. 24. T. Sun and H. Morgan, "Single-cell microfluidic impedance cytometry: a review," Microfluid Nanofluidics, vol. 8, pp. 423-443, 2010. 25. P. Seriburi, S. McGuire, A. Shastry, K. F. Bohringer, and D. R. Meldrum, "Measurement of the Cell− Substrate Separation and the Projected Area of an Individual Adherent Cell Using Electric Cell− Substrate Impedance Sensing," Analytical Chemistry, vol. 80, pp. 3677-3683, 2008. 26. Y. Huang, N. S. Sekhon, J. Borninski, N. Chen, and B. Rubinsky, "Instantaneous, quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices," Sensors and Actuators A: Physical, vol. 105, pp. 31-39, 2003. 27. J.-L. Hong, K.-C. Lan, and L.-S. Jang, "Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement," Sensors and Actuators B: Chemical, 2012. 28. C. Ionescu-Zanetti, A. Blatz, and M. Khine, "Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery," Biomed Microdevices, vol. 10, pp. 113-116, 2008. 29. http://learn.hamamatsu.com/galleries/digitalimages/mdck/mdckcells.html 30. http://www.atcc.org/~/media/Attachments/3/D/9/D/1766.ashx 31. W. F. Scherer, J. T. Syverton, and G. O. Gey, "Studies on the propagation in vitro of poliomyelitis viruses IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix," The Journal of experimental medicine, vol. 97, pp. 695-710, 1953. 32. A. Capes‐Davis, G. Theodosopoulos, I. Atkin, H. G. Drexler, A. Kohara, R. A. MacLeod, J. R. Masters, Y. Nakamura, Y. A. Reid, and R. R. Reddel, "Check your cultures! A list of cross‐contaminated or misidentified cell lines," International journal of cancer, vol. 127, pp. 1-8, 2010. 33. http://www.atcc.org/~/media/Attachments/E/7/3/C/1765.ashx 34. D. J. Giard, S. A. Aaronson, G. J. Todaro, P. Arnstein, J. H. Kersey, H. Dosik, and W. P. Parks, "In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors," Journal of the National Cancer Institute, vol. 51, pp. 1417-1423, 1973. 35. http://www.atcc.org/~/media/Attachments/2/6/1/7/1753.ashx 36. K. Okada and T. Sekino, "Impedance Measurement Handbook," Agilent Technologies, vol. 128, pp. 5950-3000, 2003. 37. E. Neumann, A. E. Sowers, and C. A. Jordan, Electroporation and electrofusion in cell biology: Springer, 1989. 38. http://www.btxonline.com/ 39. White F. M., “Vicous fluid flow,” McGraw-Hill, pp.123–124, 1974. 40. K. Pearson, "X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 50, pp. 157-175, 1900. 41. C. Iliescu, D. P. Poenar, M. Carp, and F. C. Loe, "A microfluidic device for impedance spectroscopy analysis of biological samples," Sensors and Actuators B: Chemical, vol. 123, pp. 168-176, 2007. 42. O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics: Access Online via Elsevier, 2011. 43. J. Olofsson, K. Nolkrantz, F. Ryttsen, B. A. Lambie, S. G. Weber, and O. Orwar, "Single-cell electroporation," Current Opinion in Biotechnology, vol. 14, pp. 29-34, 2003. 44. M.-H. Wang and L.-S. Jang, "A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations," Biosensors and Bioelectronics, vol. 24, pp. 2830-2835, 2009. 45. S. Z. Hua and T. Pennell, "A microfluidic chip for real-time studies of the volume of single cells," Lab on a Chip, vol. 9, pp. 251-256, 2009. 46. H. Siddiquei, A. N. Nordin, M. I. Ibrahimy, M. A. Arifin, N. H. Sulong, M. Mel, and I. Voiculescu, "Electrical cell-substrate impedance sensing (ECIS) based biosensor for characterization of DF-1 cells," in Computer and Communication Engineering (ICCCE), 2010 International Conference on, 2010, pp. 1-4. 47. X. Huang, D. Greve, D. Nguyen, and M. Domach, "Impedance based biosensor array for monitoring mammalian cell behavior," in Sensors, 2003. Proceedings of IEEE, 2003, pp. 304-309. 48. X. Huang, D. Nguyen, D. W. Greve, and M. M. Domach, "Simulation of microelectrode impedance changes due to cell growth," Sensors Journal, IEEE, vol. 4, pp. 576-583, 2004. 49. M. Brischwein, S. Herrmann, W. Vonau, F. Berthold, H. Grothe, E. R. Motrescu, and B. Wolf, "Electric cell-substrate impedance sensing with screen printed electrode structures," Lab on a Chip, vol. 6, pp. 819-822, 2006. 50. F. Asphahani, K. Wang, M. Thein, O. Veiseh, S. Yung, J. Xu, and M. Zhang, "Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment," Phys Biol, vol. 8, p. 015006, 2011. 51. L. Berdondini, M. Chiappalone, P. Van Der Wal, K. Imfeld, N. F. de Rooij, M. Koudelka-Hep, M. Tedesco, S. Martinoia, J. Van Pelt, and G. Le Masson, "A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons," Sensors and Actuators B: Chemical, vol. 114, pp. 530-541, 2006. 52. 黃明宏, "聚二甲基矽氧烷應用於可撓液晶顯示器的研究",中山大學光學工程學系, 2009. 53. H. Park, D. Kim, and K.-S. Yun, "Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection," Sensors and Actuators B: Chemical, vol. 150, pp. 167-173, 2010.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2816-
dc.description.abstract本論文主要呈現一種藉由阻抗量測觀察多個單一細胞的微流電極晶片,利用細胞阻抗量測來觀察單一細胞於微流晶片裡的生長情形。目前利用電性量測來觀察細胞大概可分為群體細胞研究與單一細胞研究。其中,群體細胞研究係將量測結果進行平均之後當作單一細胞的生長情形,但無法避免細胞之間的相互影響;而單一細胞的研究大多結合微流道或者流式細胞儀來達到量測單一細胞的效果,目前的研究結果大多只量測單一個細胞而非多個單一細胞,並無法得知同種細胞的平均生長情形。 本研究使用阻抗分析觀察量測區域內的電特性,並成功建立出符合其物理意義的等效電路模型,以實際量化其阻抗量測結果。首先,將不同的溶液(PBS以及培養液)注入晶片中觀察其阻抗特性,之後將三種不同種類的細胞(肺腺癌細胞A549、動物腎上皮細胞MDCK以及子宮頸癌細胞HeLa )分別注入晶片中,並使用阻抗分析儀來量測細胞阻抗;其頻率範圍選用600 Hz~100 kHz、電壓輸入範圍選用0.1 V~1.0 V 進行定電壓阻抗量測,藉由其阻抗量測結果可以明確分辨出不同種類的細胞。利用其等校電路模型之擬合運算,可以詳細得知細胞相對應得電子元件數值,如細胞膜電阻、細胞膜電容與細胞質電阻。當量測電壓為1.0 V時,相較於0.7 V之阻抗量測結果會有明顯降低的情形,且等效電路擬合之相位角出現了不吻合的情況。因此我們推論,輸入的電壓過大將會導致細胞膜表面有些微的穿孔現象發生,故本研究最後使用微流電極晶片產生細胞電穿孔效應,並同時使用阻抗量測與細胞染色來觀察驗證細胞膜穿孔前與穿孔後之差異。zh_TW
dc.description.abstractIn this thesis, we present a microfluidic device with microelectrodes array which is capable of measuring the impedance of single cells and providing electrical impulse for electroporation of single cell. Single cells are captured in microstructures using fluidic transmission. The device includes a glass substrate with electrodes array and PDMS with main channels, branch channels and capturing areas. An equivalent circuit model of flow resistance is used to study the flow of microfluidic device. According to analytical results, single cells are able to be captured in specific areas experimentally. In this study, the impedance of single cells and medium is successfully measured by impedance spectroscopy. An equivalent circuit model of impedance is established and fits closely to the experimental results. The system is operated at frequency between 600 Hz and 100 kHz, and the operating voltage is from 0.1 V to 1.0 V. The resistance and capacitance of cell membrane and the resistance of cytoplasm are measured by the simulation of equivalent circuit model of impedance. Finally, the electrodes array is used to provide the electrical pulse to cell for electroporation. The amplitude of electrical impulse 2.2 Vpp may be used to open the ionic channels of the cell membrane for the future application of electroporation. The cell electroporation is observed both by optical microscope to record the entrance of Trypan blue stain and impedance measurement.en_US
dc.description.tableofcontents摘要 II Abstract IV 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.2研究目的 5 1.3 文獻回顧 6 1.3.1 細胞實驗室 ( The lab in a cell ) 7 1.3.2實驗室晶片 ( Lab-on-a-chip ) 7 1.3.3 細胞阻抗量測裝置 ( Cell impedance measurement ) 9 1.3.4 電穿孔效應( Electroporation ) 13 1.4 論文架構 16 第二章 相關知識與技術 17 2.1 MDCK簡介 17 2.2 HeLa簡介 18 2.3 A549簡介 19 2.4 流體力學-雷諾數(Reynolds number) 20 2.5 阻抗分析( Impedance analysis )[36] 22 2.6 電穿孔效應( Electroporation ) 24 2.7 細胞培養 26 2.8 細胞繼代步驟 28 第三章 微流電極晶片之結構設計與製作 29 3.1 微流道與電極設計 29 3.1.1 微流道設計 29 3.1.2 有限元素模擬分析 32 3.1.3 電極晶片設計 33 3.2 微流晶片與電極晶片製作 35 3.2.1 黃光微影製程 36 3.2.2 Lift-off製程 39 3.2.3 PDMS結構製作 40 3.2.4 晶片對準與接合 42 第四章 實驗配置與流程 44 4.1 實驗設備 44 4.2 實驗操作流程 45 4.2.1 細胞培養與準備 46 4.2.2 抓取多個單一細胞 46 4.2.3 細胞阻抗量測 47 4.2.4 細胞電穿孔 48 第五章 實驗結果與討論 50 5.1 製程結果分析 50 5.1.1 電極晶片製程分析 50 5.1.2 接合製程分析 52 5.2 等效電路圖模擬分析與討論 53 5.3 阻抗分析討論 60 5.3.1 不同溶液之阻抗量測結果 60 5.3.2 細胞之阻抗量測結果分析 62 5.3.3 不同細胞之阻抗分析比較 64 5.3.4 相同細胞於不同位置下的阻抗分析 66 5.4 細胞電穿孔 ( Cell electroporation ) 68 第六章 結論與未來展望 72 6.1 結論 72 6.2 未來展望 74 參考文獻 76zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808201323362400en_US
dc.subject細胞阻抗zh_TW
dc.subjectcell impedanceen_US
dc.subject細胞電穿孔zh_TW
dc.subject單一細胞zh_TW
dc.subjectsingle cellen_US
dc.subjectmicrofluidicsen_US
dc.subjectelectroporationen_US
dc.title利用陣列電極裝置即時觀測多個單一細胞之生長zh_TW
dc.titleReal time monitoring single cells by microelectrodes arrayen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.