Please use this identifier to cite or link to this item:
標題: Electrochemical character of synthetic Todorokite
作者: Lin, Ying-Yu
關鍵字: 鈣錳礦;Todorokite;電化學;修飾電極;氧化能力;電子傳遞;electrochemical;modified electrode;oxidation;electron transfer
出版社: 土壤環境科學系所
引用: 陳鴻基、李國欽、莊作權。1995。利用粘粒修飾電極探討巴拉刈在 粘土礦物膜層中的移動性。中華民國雜草學會會刊16: 1-13。 陳紅伶。1992。片錳礦對不同構造酚類化合物的催化轉化。國立中興大學土壤研究所碩士論文。 鍾協訓。2002。網版印刷電極在分析化學上的應用與發展。國立中興大學化學研究所博士論文。 簡淑華。1995。粘粒修飾電極對巴拉刈及過氧化氫的行為之研究。國立中興大學化學研究所碩士論文。 Acevedo, D. F.; J. Balach, C. R. Rivarola, M. C. Miras, Ce. A. Barbero. 2006. Functionalised conjugated materials as building blocks of electronic nanostructures.Faraday Discuss. 131: 235-252. Al-Sagheer, F. A. and M. I. Zaki . 2004. Synthesis and surface characterization of todorokite-type microporous manganese oxides: implications for shape-selective oxidation catalysts. Microporous and Mesoporous Mater. 67: 43-52. Bard, A. J., and L. R. Faulkner. 1980. Electrochemical methods. Wiley and Sons, New York. Brock, S. L., N. Duan, Z. R. Tian, O. Giraldo, H. Zhou, and S. L. Suib. 1998. A review of porous manganese oxide materials. Chem. Mater. 10: 2619-2628. Cai, X., K. Kurt, K. Gottfried, N. Christian, D. Wolfgang, O. Bozidar. 1995. Electrocatalytic reduction of hydrogen peroxide on a palladium-modified carbon paste electrode. Electroanalyasis. 7: 340-345. Ching, S., K. S. Krukowska, and S. L. Suib. 1999. A new synthetic route to todorokite-type manganese oxides. Inorganica Chimica Acta. 294: 123-132. De Guzman, R. N., Y. F. Shen, B. R. Shaw, S. L. Suib, and C. L. O''Young. 1993. Role of cyclic voltammetry in characterizing solids: natural and synthetic manganese oxide octahedral molecular sieves. Chemistry of Materials. 5: 1395-1400. Delahay, P. 1981. New instrument methods in electrochemistry-theory, instrumentation, and applications to analytical and physical chemistry. Interscience Publishers Inc., New York. p. 3. Fitch, A. 1990. Clay modified electrodes : a review. Clay and Clay Miner. 38: 391-400. Flaig, W., H. Beutelspacher, and E. Rietz. 1975. Chemical composition and physical properties of humic substances. Pages 1-211 in J. E. Gieseking, ed. Soil Components. Vol. 1, Organic Components. Springer-Verlag, New York. Ghosh, P. K., and A. J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Ghosh, P. K., A.W. H. Mau, and A. J. Bard. 1984. Clay-modified electrodes: Part II. Electrocatalysis at bis(2,2’-bipyridyl) , 4’-dicarboxy-(2,2’-bipyridyl)Ru(II)-dispersed ruthenium dioxide-hectorite layers. J. Electroanal. Chem. 169: 315-317. Golden, D. C., C. C. Chen, and J. B. Dixon. 1986. Synthesis of todorokite. Science. 231: 717-719. Golden, D. C., C. C. Chen, and J. B. Dixon. 1987. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner. 35: 271-280. Heracleous, E. and A. Lemonidou. 2006. Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling. J. Catal. 237: 175-189. Herrmann, J. M. 2006. The electronic factor and related redox processes in oxidation catalysis. Catal. Today. 112: 73-77. Joo, P., A. Fitch, and S. H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31: 2186-2192. Kalcher, K. 1990. Chemically modified carbon paste electrodes in voltammetric analysis. Electroanal. 2: 419–433. Kalcher, K., J.-M. Kauffmann, J. Wang, I. Svancara, K. Vytras, C. Neuhold, and Z. Yang. 1995. Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990-1993. Electroanalysis. 7: 5-22. Kula, P., and Z. Navrátilová. 1996. Voltammetric copper(II) determination with a montmorillonite-modified carbon paste electrode. Fresenius J. Anal. Chem. 354: 692-695. Kula, P., and Z. Navrátilová. 2001. Anion exchange of gold chloro complexes on carbon paste electrode modified with montmorillonite for determination of gold in pharmaceuticals. Electroanalysis. 13: 795-798. Lin, Y., X. Cui, and L. Li. 2005. Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides. Electrochem. Commun. 7: 166-72. Macha, S. M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Machida, M., K. Sato, I. Ishibashi, H. M. Abul, and K.Ikeue. 2006. Electrocatalytic nitrate hydrogenation over a H+-conducting solid polymer electrolyte membrane-modified cathode assembly. Chem. Commun. 7: 732-734. Manthiram, A. and J. Kim. 1998. Low temperature synthesis of insertion oxides for lithium batteries. 10: 2895-2909. Martin, J. P., and K. Haider. 1980. Microbial degradation and stabilization of 14C-labeled lignins, phenols and phenolic polymers in relation to soil humus formation. In “Lignin Biochemistry: Microbiology, Chemistry and Potential Aplications”, ed. T. K. Kirk, T. Higuchi and H. Chang, pp.77-100.Boca Ration, Florida: CRC Press, Inc. McBride, M.B. 1987. Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Sci. Soc. Am. J. 51: 1466-1472. McBride, M. B. 1989. Oxidation of 1,2- and 1,4-dihydroxybenzene by birnessite in acidic aqueous suspension. Clays Clay Minerals. 37: 479-486. Navrátilová, Z., and P. Kula. 2002. Clay modified electrodes : present applications and prospects. Electroanalysis. 15: 837-846. Neophytides, S. G., K. Murase, S. Zafeiratos, G. Papakonstantinou, F. E. Paloukis, N. V. Krstajic, and M. M. Jaksic. 2006 Composite hypo-hyper-d-intermetallic and interionic phases as supported interactive electrocatalysts. J. Phys. Chem. B. 110: 3030-3042. Nakanishi, K. Infrared absorption spectroscopy. Tokyo. Ogasawara, T., A. Debart, M. Holzapfel, P. Novak, and P. G. Bruce. 2006. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128: 1390-1393. Oungpipat, W., P. Southwell-Keely, and P. W. Alexander.1995. Flow injection detection of tetracyclines by electrocatalytic oxidation at a nickel-modified glassy carbon electrode. Analyst (Cambridge, United Kingdom). 120: 1559-65. Oyama, N., and F. C. Anson. 1986. Catalysis of the electroreduction of hydrogen peroxide by montmorillonite clay coatings on graphite electrodes. J. Electroanal. Chem. 199: 467-470. Post, J. E., and D. L. Bish. 1988. Rietveld refinement of the todorokite structure. Am. Mineralog. 73: 861-869. Potter, R. M., and G. R. Rossman. 1979. The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am. Mineral. 64: 1199-1218. Ruiz-Morales, J. C., J. Canales-Vazquez, C. Savaniu, D. Marrero-Lopez, W. Zhou, and J. T. S. Irvine. 2006. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature. 439: 568-571. Schachl K., Ph.D. Theses, Karl-Franzens University of Graz, Graz, 1998. Shen, Y. F., R. P. Zerger, R. N. DeGuzman, S. L. Suib, L. McCurdy, D. I. Potter, and C. L. O’Young. 1993. Manganese oxide octahedral molecular sieves: preparation, characterization, and applications. Science. 260: 511-515. Shen, Y. F., S. L. Suib, and C. L. O’Young. 1994. Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. J. Am. Chem. Soc. 116: 11020–11029. Shen, Y. F., S. L. Suib, and C. L. O’Young. 1996. Cu containing octahedral molecular sieves and octahedral layeredmaterials. J. Catal. 161: 115-122. Shimizu, Y. 2005. Design of novel electrochemical sensor device with ceramic functional electrode. Chem. Sens. 21: 24-32. Shindo, H., and P. M. Huang. 1982. Role od Mn(IV) oxide in abiotic formation of humic substances in the environment. Nature (London). 298: 363-365. Shindo, H., and P. M. Huang. 1984a. Catalytic effects of manganese(IV), iron(III) , aluminum and silicon oxides on the formation of phenolic polymers. Soil Sci. Soc. Am. J. 48: 927-934. Shindo, H., and P. M. Huang. 1984b. Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature (London). 308: 57-58. Shindo, H., and T. Higashi. 1986. Polymerization of hydroquinone as influenced by selected inorganic soil components. Soil Sci. Plant Nutr. 32: 305-309. Skinner, H. C. W., and R. W. Fitspatrick (eds.). 1992. Iron and manganese biomineralization. In Skinner, H. C. W., and R. W. Fitspatrick eds. Biomineralisation Processes of Iron and Manganes. Catena Supplement. 21: 31-50. Skoog, D. A., D. M. West, and F. J. Holle. 1996. Fundamentals of analytical chemistry. Sanunders College Publishing, New York. p. 278. Socrates, G. 1980. Infrared Characteristic Group Frequencies; John Wiley & Sons: New York. Socrates, G. 1994. Infrared Characteristic Group Frequencies; John Wiley & Sons: New York. Stone, A. T., and J. J. Morgan. 1984. Reduction and dissolution of manganese (III) and manganese (IV) oxides by organics. 2. Survey of the reactivity of organics. Environ. Sci. Technol. 18: 617-624. Subramanian, P., and A. Fitch. 1992. Diffusional transport of solute through clay: Use of clay-modified electrodes. Environ. Sci. Technol. 26: 1775-1779. Taha, Z., and J. Wang. 1991. Electrocatalysis and flow detection at a glassy carbon electrode modified with a thin film of oxymanganese species. Electroanalysis. 3: 215-219. Vileno, E., Y. Ma, H. Zhou, and S. L. Suib. 1998. Facile synthesis of synthetic todorokite (OMS-1), co-precipitation reactions in the presence of a microwave field. Microporous Mesoporous Mater. 20: 3-15. Wang, J. Y., G. G. Xia, Y. G. Yin, S. L. Suib, and C. L. O’Young. 1998. Cyclohexane functionalization catalyzed by octahedral molecular sieve (OMS-1) materials. J. Catal. 176: 275-284. Wang S. H. and T. C. Chou. 2000. Immobilized ionophore calcium ion sensor modified by montmorillonite. Electroanalysis. 12: 468-470. Yantasee, W., Y. Lin, T. S. Zemanian, and G. E. Fryxell. 2003. Voltammetric detection of lead(II) and mercury(II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS). Analyst. 128: 467-472. Zhou, H., Y. F. Shen, J. Y. Wang, X. Chen, C. L. O’Young, and S. L. Suib. 1998a. Studies of decomposition of H2O2 over manganese oxide octahedral molecular sieve materials. J. Catal. 176: 321-328. Zhou, H., J. Y. Wang, X. Chen, C. L. O’Young, and S. L. Suib. 1998b. Studies of oxidative dehydrogenation of ethanol over manganese oxide octahedral molecular sieve catalysts. Microporous Mesoporous Mater. 21: 315-324. Zen, J. M., and P. J. Chen. 1997. A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Anal. Chem. 69: 5087-5093. Zen, J. M., H. P. Chen, and A. Senthil Kumar. 2001. Disposable clay-coated screen-printed electrode for amitrole analysis. Anal. Chim. Acta. 449: 95-102. Zen, J. M., P. Y. Chen, and A. S. Kumar. 2003. Flow injection analysis of an ultratrace amount of arsenite using a Prussian Blue-modified screen-printed electrode. Anal. Chem. 75: 6017-6022.
參考前人合成鈣錳礦的方法,改變其中的參數(層間陽離子、熱處理溫度與時間)來合成鈣錳礦,經X-射線繞射儀鑑定合成鈣錳礦,結果顯示主要特性的繞射峰為5.7 Ǻ與4.0 Ǻ;透過掃描式電子顯微鏡觀察到合成的鈣錳礦以片狀結構為主,且存在小顆粒的結晶。利用合成鈣錳礦進行對苯二酚催化試驗,以電化學循環伏安法及傅立葉轉換紅外線光譜儀分析,結果指出合成鈣錳礦有催化對苯二酚降解與氧化的情形,其中又以銅-鈣錳礦的結果較明顯。
利用沉降修飾方法將合成鈣錳礦修飾於電極上,仿照黏粒修飾電極的探討方式,分別偵測Fe(bpy)33+ 與 MV2+ 溶液,根據電化學行為理論進行探討。結果顯示鐵-鈣錳礦修飾電極對於Fe(bpy)33+ 有較好的偵測效果,Fe(bpy)33+ 通過鐵-鈣錳礦膜層的電子傳遞較快,且合成鈣錳礦具有增大電極活性區的能力,另外對於MV2+ 的結果,偵測MV2+ 的試驗較未能顯示合成鈣錳礦的電化學特性。
以合成鈣錳礦修飾電極,透過MV2+ 作為電子傳遞物,對H2O2 進行催化試驗,結果得知以三種不同層間陽離子合成之鈣錳礦 ( 銅、鐵、錳 ) 皆得到良好的催化效果,對照多鐵蒙特石修飾電極,三種合成鈣錳礦的催化效果皆大於多鐵蒙特石,其中以銅-鈣錳礦修飾電極催化效果最佳。添加不同濃度H2O2 進行偵測,以銅-鈣錳礦的偵測效果與靈敏度最佳。

Manganese oxides universally exist in soils, and that usually have catalytic power due to its changeable valence. It's important to study electroanalysis and catalysis of todorokite ( synthetic manganese oxide ) for future research.
Todorokite was synthesized by changing interstitial cations and hydrothermal step, and it had two diffractive peaks (5.7 Ǻ and 4.0 Ǻ ) in XRD diffractogram. The SEM image of synthetic todorokites revealed platelet structure and smaller crystal. The catalytic ability was carried out via the catalytic transformation of hydroquinone using electroanalysis of cyclic voltammetry and Fourier transform-infrared spectrometer. The result indicated hydroquinone could be catalyzed by synthetic todorokite, and Cu-todorokite had most catalytic power.
We studied oxidative ability of synthetic todorokite by determining electrochemical ability of model ( Fe(bpy)33+ and MV2+ ) analysis. The results indicated larger oxidative ability for Fe(bpy)33+. Fe(bpy)33+ had the fastest electron transfer in Fe-todorokite film. Furthermore, todorokite modified electrodes could enhance the electroactivity of electrode surface. On the other side, synthetic todorokite wasn't observed electrochemical character by determined MV2+.
Catalysis of H2O2 was carried out using MV2+ as electron mediator and determination of synthetic todorokite-modified electrode. Three synthetic todorokite-modified electrodes had well catalytic activity comparing with SWa-1 modified electrode. The catalysis of Cu-todorokite modified electrode was the most active. Cu-todorokite modified electrode revealed better sensitive and well linear in MV2+ solution containing different H2O2 concentration.
Electrochemical technique has advantages of rapid response, convenient, and cost less, combined screen-printed carbon electrode with cheep, easy modification and disposability, that can be regard as a well analytic method for synthetic todorokite-modified electrodes research. Furthermore, the electrochemical character of synthetic todorokite can be applied to more electrocatalysis and biosensitive in future.
其他識別: U0005-1108200920515300
Appears in Collections:土壤環境科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.