Please use this identifier to cite or link to this item:
標題: 雙苯環有機化合物之分析技術建立及其生物降解之研究
Analysis Method and Biodegradation of Biphenyl Organic Compounds
作者: 周希瓴
Chou, Shin-Ling
關鍵字: biodegradation;生物降解;PBDE;SPME;SPME;PBDE
出版社: 土壤環境科學系所
引用: 王淳剛,2007,多溴聯苯醚之光降解與生物降解研究,國立中興大學土壤環境科學系碩士論文。 戴侑宗,2006,奈米零價鐵還原降解十溴聯苯醚之研究,國立中興大學土壤環境科學系碩士論文。 Agrell, C., A.F.H. ter Schure, J. Sveder, A. Bokenstrand, P. Larsson, and B.N. Zegers. 2004. Polybrominated diphenyl ethers (PBDEs) at a solid waste incineration plant l: Atmospheric concentrations. Atmos. Environ. 38: 5135-5148. Ahn, Y., J. Sanseverino, and G.S. Sayler. 1999. Analyses of polycyclic aromatic hydrocarbon-degrading bacteria isolated from contaminated soils. Biodegradation. 10: 149-157. Ahn, Y.B., S.K. Rhee, D.E. Fennell, L.J. Kerkhof, U. Hentschel, and M.M. Häggblom. 2003. Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl. Environ. Microbiol. 69:4159-4166. Alpendurada, M. de F. 2000. Review, Solid-phase microextraction : a promising technigue for sample preparation in environmental analysis. J. Chromatogr. 889: 3-14. Alan, F., and Q. Brid. 2002. The enhancement of 2-chlorophenol degradation by a mixed microbial community when augmented with Pseudomonas putida CP1. Water Res. 36:2443-2450. Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169. Anne, K.M., W. Kamma, C. Søren, and J.S. Søren. 2001. The effect of long-term mercury pollution on the soil microbial community. FEMS Micro. Ecol. 36:11-19. Antonio, G., A.C. Keijzer-Wolters, G. Cacco, and J.D. van Elsas. 1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electophoresis. J. Micro. Boil. Meth. 38:1-15. Battaglia, V., M. Salvi, and A. Toninello. 2005. Oxidative stress is responsible for mitochondrial permeability transition induction by salicylate in liver mitochondria. J. Biol. Chem. 280: 33864-33872. Barbara, T., K. Wonerow, and K. Paschke. 1999. DGGE is more sensitive for the detection of somatic point mutations than direct sequencing. Bio. Tech. 27:266-268. Bartrons, M., J.O. Grimalt, and J. Catalan. 2007. Concentration changes of organochlorine compounds and polybromodiphenyl ethers during metamorphosis of aquatic insects. Environ. Sci. Techol. 41: 6137-6141. Bauer, J.E. and D.G. Capone. 1988. Effect of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 54: 1649-1655. Bastiaens, L. 1998. Isolation and characterisation of polycyclic aromatic hydrocarbon- degrading bacteria, evaluation of the use of the isolates in soil slurry bioremediation, Leuven : Katholieke Universiteit Leuven. Bergman, A., M. Anthanasiadou, E. Klasson-Wehler, and A. Siodin. 1999. Polybrominated environmental pollutants: Human and wildlife exposures. Oranohalogen Compounds. 43: 89-92. Behymer, T.D. and R.A. Hite. 1985. Photolysis of polycyclic aromatic hydrocarbons particulates. Environ. Sci. Technol. 19: 1004-1006. Beller, H.R., A.M. Spormann, P.K. Sharma, J.R. Cole, and M. Reinhard. 1996. Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188-1196. Betts, K.S. 2002. Rapidly rising PBDE levels in North America. Environ. Sci. Techol. 36: 50A-52A. Bezares-Cruz, J., T. J. Chad, and I. Hua, 2004. Solar photodecomposition of decabromodiphenyl ether: Products and quantum yield. Environ. Sci. Technol. 38: 4149-4156. Bøjrseth, A. and T. Ramahl. 1985. Handbook of polycyclic aromatic hydrocarbons (Volume 2): emission source and recent progress in analytical chemistry, Marcel Dekker and Basel, Inc., New York, U.S.A. Breedveld, G.D. and D.A. Karlsen. 2000. Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Appl. Microbiol. Biotechnol. 54: 255-261. Braun, V., and H. Killmann. 1999. Bacterial solutions to the iron-supply problem. Trends Biochem. Sci. 24:104-109. Butt, C.M., M.L. Diamond, J. Truong, M.G. Ikonomou, and A.F.H. ter Schure. 2004. Spatial distribution of polybrominated diphenyl ethers in southern ontario as measured in indoor and outdoor window organic films. Environ. Sci. Technol. 38: 724-731. Cai, L., J. Xing, L. Dong, and C. Wu. 2003. Application of polyphenylmethylsiloxane coated fiber for solid-phase microextraction combined with microwave-assisted extraction for the determination of organochlorine pesticides in Chinese teas. J. Chromatogr. A.1015:11-21. Carmen, S.P., G.C. Maria, L. Maria, G.J. Carmen, and R. Cela. 2006. Headspace solid-phase microextraction gas chromatography tandem mass spectrometry for the determination of brominated flame retardants in environmental solid samples. Anal. Bioanal. Chem. 385: 637-644. Carriere, P.P.E., and F.A. Mesania. 1995. Enhanced biodegradation of creosote -contaminated soil. Waste Manag. 15: 579-583. Carrizo, D. and J.O. Grimalt. 2007. Influence of breastfeeding in the ccumulation of polybromodiphenyl ethers during the first years of child growth. Environ. Sci. Technol. 41: 4907-4912. Christensen, E.R. and X. Zhang. 1993. Sources of polycyclic aromatic hydrocarbons to lake Michigan determined from sedimentary records. Environ. Sci. Technol. 27: 139-146. Chen, J.W., T. Harner, P. Yang, X. Quan, S. Chen, K.W. Sxhramm, and A. Kettrup. 2003. Quantitative predictive models for octanol-air partition coefficients of polybrominated diphenyl ethers at different temperatures. Chemosphere. 51: 577-584. Chandra, V., M.L. James, and K.F. Sheldon. 1994. Size distribution of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods, and source characterization. Environ. Sci. Technol. 28: 555-562. Cope, V.W. and D.R. Kalkwarf. 1987. Photooxidation of selected polycyclic aromatic hydrocarbons and pyrenequinones coated on glass surfaces. Environ. Sci. Technol. 21: 643-648. Colborn, T., F.S. Saal, and A.M. Soto. 1993. Developmental effects of endocrine- distrupting chemicals in wildlife and humans. Environ. Health Perspec. 101: 378-384 Cotham, W.E. and T.F. Bidleman. 1995. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in air at an urban and a rural site near Lake Michigan. Environ. Sci. Technol. 29: 2782-2789. Cotter, P.A., S. Darie, and R.P. Gunsalus. 1992. The effect of iron limitation on expression of the aerobic and anaerobic electron transport pathway genes in Escherichia coli. FEMS Microbiol. Lett. 79: 227-232. Covaci, A., S. Voorspoels, L. Ramos, H. Neels, and R. Blust. 2007. Recent developments in the analysis of brominated flame retardants and brominated natural compounds. J. Chromatogr. A. 1153:145-171. Darnerud, P.O., G.S. Eriksen, T. Johannesson, P.B. Larsen, and M. Viluksela. 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure and toxicology. Environ. Health Perspect. 109: 49-68. Darnerud, P.O. and S. Risberg. 2006. Tissue localisation of tetra-and pentabro -modiphenyl ether congeners (BDE-47,-85 and -99) in perinatal and adult C57BL mice. Chemosphere. 62: 485-493. de Wit, C. 2002. An overview of brominated flame retardants in the environment. Chemosphere. 46: 583-624. de Wit, C., M. Alaee, and D. Muir. 2004. Brominated flame retardants in the arctic-an overview of spatial and temporal trends. Organohalogen Compd. 66: 3811-3816. Dinkla, I.J.T., E.M. Gabor, and D.B. Janssen. 2001. Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Appl. Environ. Microbiol. 67: 3406-3412. Doong, R.A., S.M. Chang, and Y.C. Sun. 2000. Solid-phase microextraction and headspace solid-phase microextraction for the determination of high molecular-weight polycyclic aromatic hydrocarbons in water and soil samples. J. Chromatogr. 38:528-534. Domeño, C., G. Munizza, and C. Nerın. 2005. Development of a solid-phase microextraction method for direct determination of pentachlorophenol in paper and board samples:Comparison with conventional extraction method. J. Chromatogr. A.1095:8-15. Dipple, A. and C.A. Bigger. 1991. Mechanism and action of food-associated polycyclic aromatic hydrocarbon carcinogens. Mutat. Res. 259:263-276. Dong, H., G. Zhang, H. Jiang, B. Yu, L.R. Chapman, C.R. Lucas, and M.W. Fields. 2006. Microbial diversity in sediments of saline Qinghai lake, China: Linking geochemical controls to microbial ecology. Microb. Ecol. 51:65-82. Dagley, S., and D.A. Stopher. 1959. A new mode of fission of the benzene nucleus by bacteria. Biochemical journal. 73:16 Eaton, R.W. and P.J. Chapman. 1992. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J. Bacteriol. 174:7542-7554. Escolar, L., J. Perez-Martin, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181:6223-6229. Fang, L., J. Huang, G. Yu, and L. Wang. 2008. Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane. Chemosphere. 71:258-267. Flo, T.H., K.D. Smith, S. Sato, D.J. Rodriguez, M.A. Holmes, R.K. Strong, S. Akira, and A. Aderem. 2004. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 432: 917-921. Ferris, M.J., G. Muyzer, and D.M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62:340-346. Fioressi, S. and R. Arce. 2005. Photochemical transformations of benzo[e]pyrene in solution and adsorbed on silica gel and alumina surfaces. Environ. Sci. Technol. 39: 3646-3655. Gerecke, A.C., P.C. Hartmann, N.V. Heeb, H.E. Kohler, W. Giger, P. Schmid, M. Zennegg, and M. Kohler. 2005. Anaerobic degradation of decabromodiphenyl ether. Environ. Sci. Technol. 39:1078-1083. Gabriela, F.D., A.S. Rosado, L. Seldin, W. de Araujo, and J.D. van Elsas. 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization(dsz) gene. Appl. Environ. Microbiol. 67:1052-1062. Griffin, B.M., J.M. Tiedje, and F.E. Löffler. 2004. Anaerobic microbial reductive dechlorination of tetrachloroethene to predominately trans-1,2-dichloroethene. Environ. Sci. Technol. 38: 4300-4303. Grostern1, A. and E.A. Edwards. 2006. Growth of Dehalobacter and Dehalococcoides spp. during Degradation of Chlorinated Ethanes. Appl. Environ. Microbiol. 72: 428-436. Guerin, W.F. and S.A. Boyd. 1990. Influence of sorption on biodegradation of naphthalene by soil bacteria, 82nd Annual Meeting, Soil Science Society of America. Harrison, R.M., D.J.T. Smith, and L. Luhana. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham. U.K. Environ. Sci. Technol. 30: 825-832. Holben, W.E. 1994. Isolation and purification of bacterial DNA from soil. In Methods of Soil Analysis, Soil Society of America. 727-751. Hernández, R., T. Portolés, E. Pitarch, and F.J. López. 2007. Target and nontarget screening of organic micropollutants in water by solid-phase microextraction combined with gas chromatography/high-resolution time-of-flight mass spectrometry. Anal. Chem. 79: 9494-9504. Hook, G.L., G.L. Kimm, T. Hall, and P.A. Smith. 2002. Solid-phase microextraction (SPME)for rapid field sampling and analysis by gas chromatography-mass spectrometry(GC-MS). Trends Analyt. Chem. 20:534-543. Hites, R.A. 2004. Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations, Environ. Sci. and Technol. 38:945-956. Hubbard, J. A., K. B. Lewandowska, M. N. Hughes, and R. K. Poole. 1986. Effects of iron-limitation of Escherichia coli on growth, the respiratory chains and gallium uptake. Arch. Microbiol. 146:80-86. Hundt, K., U. Jonas, E. Hammer, and F. Schauer. 2004. Transformation of diphenyl ethers by Trametes versicolor and characterization of ring cleavage products. Biodegradation. 10:279-286. Ikonomou, M.G., S. Rayne, and R.F. Addison. 2002. Exponential increases of the brominated flame retardants, polybrominated diphenyl ethers, in the Canadian Arctic from 1981 to 2000. Environ. Sci. Technol. 36: 1886-1892. Ikonomou, M.G., S. Rayne, M. Fischer, M.P. Fernandez, and W. Cretney. 2002. Occurrence and congener profiles of polybrominated diphenyl ethers(PBDEs)in environmental samples from coastal British Columbia, Canada. Chemosphere. 46: 649-663. Jacob, J. 1996. The significance of polycyclic aromatic hydrocarbons as environmental carcinogens. Pure Appl. Chem. 68:301-308 Jia, M., Q.H. Zhang, and D.B. Min. 1998. Optimization of Solid-Phase Microextraction Analysis for Headspace Flavor Compounds of Orange Juice. J. Agric. Food Chem. 46: 2744-2747. Josephoon, J. 1984. Polycyclic aromatic hydrocarbons. Environ. Sci. Technol. 18: 93A-95A. Kastner, M., M. Breuer-Jammali, and B. Mahro. 1994. Enumeration and characterization of the soil microflora from hydrocarboncontaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl. Microbiol. Biotech. 41: 267-273. Kruger, C. 1998. Polybrominated biphenyls and polybrominated diphenyl ethers-detection and quantification in selected foods. Thesis-University of Munster, Germany. Koziel, J.A., and J. Pawliszyn. 2001. Air sampling and analysis of volatile organic compounds with solid phase microextraction. J. Chromatogr. A. 954: 191-198. Kiyohara, H., N. Takizawa, and K. Nagao. 1992. Natural distribution of bacteria metabolizing many kinds of polycyclic aromatic hydrocarbons. J. Ferment. Bioeng. 74: 49-51. Kim, Y.M., I.H. Nam, K. Murugesan, S. Schmidt, D.E. Crowley, and Y.S. Chang. 2007. Biodegradation of diphenyl ether and transformation of selected brominated congeners by Sphingomonas sp. PH-07. Appl. Microbiol. Biotechnol. 77:187-194. Keum, Y.S. and Q.X. Li. 2005. Reductive debromination of polybrominated diphenyl ethers by zerovalent Iron. Environ. Sci. Technol. 39:2280-2286. Kielemoes, J., P.D. Boever, and W. Verstraete. 2000. Influence of denitrification on the corrosion of iron and stainless steel powder. Environ. Sci. Technol. 34: 663-671. Kuske, C.R., K.L. Banton, D.L. Adorada, P.C. Stark, K.K. Hill, and P.J. Jackson. 1998. Samll-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64:2463-2472. Lind, Y., M. Aune, S. Atuma, W. Becker, R. Bjerselius, and A. Glynn. 2002. Food intake of the brominated flame retardants PBDEs and HBCD in Sweden. Organohalogen Compounds. 58: 181-184. Liu, T.T., and T.S. Yang. 2002. Optimization of Solid-phase microextraction analysis for studying change of headspace flavor compounds of banana during ripening. J. Agric. Food Chem. 50: 653-657. Longwell, J.F. 1982. The formation of polycyclic aromatic hydrocarbons by Combustion. Proceedings of the 19th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA. 1339-1350. Lopez, P., C. Sanchez, R. Batlle, and C. Nerin. 2005. Solid- and vapor-phase antimicrobial activities of six essential oils: susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 53: 6939-6946. Lord, H., and J. Pawliszyn. 2000. Review evolution of soild-phase microextraction technology. J. Chromatogr. A: 153-193. Lai, M.C., C.C. Lin, P.H. Yu, Y.F. Huang, and S.C. Chen. 2004. Methanocalculus chunghsingensis sp. Nov., isolated from an estuary and a marine fishpond in Taiwan. Int. J. Syst. Evol. Microbiol. 54:183-189. Maidak, B.L., N. Larsen, M.J. McCaughey, R. Overbeek, G.J. Olsen, K. Fogel, J. Blandy, and C.R. Woese. 1994. The ribosomal database project. Nucleic Acid Res. 22:3485-3487. Maturrano, L., F. Santos, R. Rosselloacute-Mora, and J. Antoacuten. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl. Environ. Microbiol. 72:3887-3895. Mackay, D., W.Y. Shiu, Kuo-Ching. Ma, S.C. Lee. 2006. In Handbook of physical-chemical properties and environmental fate for organic chemical. Mancini, S.A., S.K. Hirschorn, M. Elsner, G. Lacrampe-Couloume, B.E. Sleep, E.A. Edwards, and B.S. Lollar. 2006. Effects of trace element concentration on enzyme controlled stable isotope fractionation during aerobic biodegradation of toluene. Environ. Sci. Technol. 40: 7675-7681. Malins, D.C., M.S. Krahn, M.S. Myers, M.L. Rhodes, D.W. Brown, C.A. Krone, B.B. Chain, and S.L. Chan. 1985. Toxic chemicals in sediments and biota from a creosote-polluted harbor; relationships with hepatic neoplasms and other hepatic lesions in English sole (Paraphrys vetulus). Carcinogenesis. 6: 1463-1469. Magdic, S. and J.B. Pawliszyn. 1996. Analysis of organochlorine pesticides using solid-phase microcxtraction. J. Chromatogr. A. 723: 111-122. McDonald, T.A. 2002. A perspective on the potential health risks of PBDEs. Chemosphere 46: 745-755. Menzie, C.A., B.B. Protocki, and J. Santodonato. 1992. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 26: 1278-1284. Meironyte, G.D. 2002. Organohalogen contaminants in humans with emphasis on polybrominated diphenyl ethers. PhD Thesis. Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden. Myers, R.M., T. Maniatis, and L.S. Lerman. 1987. Detection and localization of single base change by denaturing gradient gel electrophoresis. Methods Enzymol. 155:501-527. Meironyte, D., K. Norén, and Å. Bergman. 1999. Analysis of polybrominated diphenyl ethers in swedish human milk. A time-related trend study, 1972-1997. J. Toxicol. Environ. Health. 58: 329-41. Muyzer, G. 1999. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr. Opin. Microbiol. 2:317-322. Miller, G.S., C.E. Milliken, K.R. Sowers, and H.D. May. 2005. Reductive dechlorination of tetrachloroethene to trans-Dichloroethene and cis-Dichloroethene by PCB-dechlorinating bacterium DF-1. Environ. Sci. Technol. 39: 2631-2635. Min, Jee-Eun., M. Kim, J.H. Pardue, and Jae-Woo. Park. 2008. Reduction of trichloroethylene and nitrate by zero-valent iron with peat. J. Environ. Sci. Health A. 43: 144-153. Moreels, D., L. Bastiaens, F. Ollevier, R. Merckx, L. Diels, and D. Springae. 2004. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Microbiol. Ecol. 49:121-128. Muyzer, G., E.C. Dewaal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700 Nestler, F.H.M. 1974. Characterization of wood-preserving coal-tar creosote by gas-liquid chromatography. Anal. Chem. 46:46-53. Nováková, H., M. Vosahlková, J. Pazlarová, M. Macková, J. Burkhard, and K. Demnerová, 2002. PCB metabolism by Pseudomonas sp. P2. Int. Biodeterio. Biodegrad. 50:47-54. Norstrom, R.J., M. Simon, J. Moisey, B. Wakeford, and D.V. Weseloh. 2002. Geographic distribution (2000) and temporal trends (1981-2000) of brominated diphenyle ethers in Great Lakes herring gull eggs. Environ. Sci. Technol. 36: 4783-4789. Olsen, G.J., D.J. Lane, S.J. Giovannoni, and N.P. Pace. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Ann. Rev. Microbiol. 40:337-365. Pawlyszin, J. 1999. Applications of solid-phase microextraction. RSC, Cambridge. Peter, A.J., P. Coleman, and K.C. Jpnes. 1999a. Organochlorine pesticides in UK air. Organohalogen Compounds. 41: 447-450. Pino, V., J.H. Ayala, A.M. Afonso, and V. González. 2003. Micellar microwave-assisted extraction combined with solid-phase microextraction for the determination of polycyclic aromatic hydrocarbons in a certified marine sediment. Anal. Chim. Acta. 477: 81-91. Pfeifer, F., H.G. Trüper, J. Klein, and S. Schacht. 1993. Degradation of diphenyl ether by Pseudomonas cepacia Et4: enzymatic release of phenol from 2,3-dihydroxy-diphenyl ether. Arch. Microbiol. 159:323-329. Polo, M., C. Gomez-Noya, J.B. Quintana, M. Llompart, C. Garcia-Jares, and R. Cela. 2004. Development of a solid-phase microextraction gas chromatography/tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples. Anal. Chem. 76: 1054-1062. Powlowski, J., and V. Shingler. 1990. In vireo analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 172:6834-6840. Rahman, F., K.H. Langford, M.D. Scrimshaw, and J.N. Lester. 2001. Polybrominated diphenyl ether PBDE flame retardants. Sci. Total Environ. 275: 1-17. Rayne, S., M.G. Ikonomou, and M.D. Whale. 2003. Anaerobic microbial and photochemical degradation of 4,4’-dibromodiphenyl ether. Water Res. 37:551-560. Renner, R.,T 2000. TCanada contemplates curbs on stain repellents.T Environ. Sci. Technol. 34:T1092-1093T. Rothrock, M.J. and F. Garcla-Pichel. 2005. Microbial diversity of benthic mats along a tidal desiccation gradient. Environ. Microbiol. 7:593-601. Ranjard, L., F. Poly, and S. Nazaret. 2000. Mini-review. Monitoring complex bacterial communities using culture-independent molecular techniques: application to soil environment. Res. Microbiol. 151:167-177. Rohring, L. and H.U. Meisch. 2000. Application of solid-phase microextraction for the rapid analysis of chlorinated organics in breast milk. Fresenius J. Anal. Chem. 366: 106-111. Saxena, K., T.R. Henry, L.E. Solem, and K.B. Wallace. 1995. Enhanced induction of the mitochondrial permeability transition following acute menadione administration. Arch. Biochem. Biophys. 317: 79-84. Schecter, A., M. Pavuk, O. Papke, J.J. Ryan, L. Birnbaum, and R. Rosen. 2003. Polybrominated diphenyl ethers (PBDEs) in U.S. mothers milk. Environ. Health Perspect. 111: 1723-1729. Sellstrom, U., A. Kierkegaard, C. de Wit, and B. Jansson. 1998. Polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from a Swedish river. Environ. Toxicol. Chem. 17: 1065-1072. She, J., M. Petreas, J. Winkler, P. Visita, M. McKinney, and D. Kopec, 2001. PBDEs in the San Francisco bay area: measurements in harbor seal blubber and human breast adipose tissue. Chemosphere. 46:697-707. Sjödin, A., L. Hagmar, E. Klasson-Wehler, K. Kronholm-Diab, E. Jakobsson and Å. Bergman. 1999. Flame retardant exposure: polybrominated diphenyl ethers in blood from Swedish works. Environ. Health Perspect. 107: 643-648. Sjödin, A, L. Hagmar, E. Klasson-Wehler, J. Björk, and Å. Bergman. 2000. Influence of the consumption of fatty Baltic Sea fish on plasma levels of halogenated environmental contaminants in Latvian and Swedish men. Environ. Health Perspect. 108:1035-41. Sjödin, A., T.D.G. Patterson, T.A Tand, and T. Bergman. 2003. A review on human exposure to brominated flame retardants-particularly polybrominated diphenyl ethers. Environ. Inter. 29:829-839. Stern, G.A. and M.G. Ikonomou. 2000. Temporal trends of polybrominated diphenyl ethers in SE Baffin Beluga: increasing evidence of long range atmospheric transport. Organohalogen Compounda. 47:81-84. Strandberg, B., N.G. Dodder, I. Basu, and R.A. Hites. 2001. Concentrations and spatial variations of polybrominated diphenyl ethers and ther organohalogen compounds in Great Lakes air. Environ. Sci. Technol. 35:1078-1083. Snow, N.H. 2000. Solid-phase microextraction of drugs from biological matrices. J. Chromatogr. A. 885:445-455. Shaw, J.P. and S. Harayama. 1995. Characterization in vitro of the hydroxylase component of xylene monooxygenase, the first enzyme of the TOL-plasmid-encoded pathway for the mineralization of toluene and xylenes. J. Ferment. Bioeng. 79: 195-199. Staijen, I. E., and B. Witholt. 1998. Synthesis of alkane hydroxylase of Pseudomonas oleovorans increases the iron requirement of alk+ bacterial strains. Biotechnol. Bioeng. 57:228-237. Schmidt, S., R.M. Wittich, D. Erdmann, H. Wilkes, W. Francke, and P. Fortnagel. 1992. Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl. Environ. Microbiol. 58:2744-2750. Schmidt, S., P. Fortnagel, and R.M. Wittich. 1993. Biodegradation and transformation of 4,4’- and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl. Environ. Microbiol. 59:3931-3933. Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:plant-dependent enrichment and seasonal shits revealed. Appl. Environ. Microbiol. 67:4742-4751. Takase, I., T. Omori, and Y. Minoda. 1986. Microbial degradation products from biphenyl-related compounds. Agric. Biol. Chem. 50:681-686. Tausson, W.O. 1927. Naphthalin als kohlenstoffquelle fur bakterien. Planta. 4:214-256. Thompson, L.C., J.E. Lane, S.G. Codreanu, J. Harp, G.L. Gilliland, and R.N. Armstrong. 2007. 2-Hydroxychromene-2-carboxylic Acid Isomerase: A Kappa Class Glutathione Transferase from Pseudomonas putida. Biochemistry. 46 : 6710-6722. Tittlemier, S.A., T. Halldorson, G.A. Stern, G.T. Tomy. 2002. Vapor pressures, aqueous solubilities, and henry’s law constants of some brominated flame retardants. Environ. Toxicol. Chem. 21:1804-1810. Tuominen, S., S. Salomaa, H. Pyysalo, E. Skyttä, L. Tlkkanen, T. Nurmela, M. Sorsa, V. PohJola, M. Sauri, and K. Himberg. 1988. Polynuclear aromatic compounds and genotoxicity in particulate and vapor phases of ambient air: effect of Traffic, Season, and Meteorological Conditions. Environ. Sci. Technol. 22: 1228-1234. Tsai, S.W. and K.K. Wu. 2003. Determination of ethylene oxide by solid-phase microextraction device with on-fiber derivatization. J. Chromatogr. A. 991: 1-11. Tokarz, J.A, Mi-Y. Ahn, J. Leng, T.R. Filley, and L. Nies. 2008. Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Environ. Sci. Technol. 42: 1157-1164. Utsumi, M., S.E. Belova, G.M. King, and H. Uchiyama. 2003. Phylogenetic comparison of methanogen diversity in different wetlands soils. J. Gen. Appl. Microbiol. 49:75-83. van de Peer, Y., I. van den Broeck, P. de Dijk, and R. de Wachter. 1994. Database on the structure of small ribosomal subunit RNA. Nucleic Acid Res. 22:3488-3493. Vasil, M.L., and U.A. Ochsner. 1999. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol. Microbiol. 34: 399-413. Venturi, V., P. Weisbeek, and M. Koster. 1995. Gene regulation of siderophore -mediated iron acquisition in Pseudomonas: not only the Fur repressor. Mol. Microbiol. 17:603-610. Wackett, L.P. 2003. Pseudomonas putida-a versatile biocatalyst. Nature Biotechnology. 21:136-138. Watanabe, I., and S. Sakai. 2003. Environmental release and behavior of brominated flame retardants. Environ. Int. 29:665-682. Wagrowski, D.M., and R.A. Hites. 1997. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ. Sci. Technol. 31: 279-282. Wu, Q., C.E. Milliken, G.P. Meier, J.E.M. Watts, K.R. Sowers, and H.D. May. 2002. Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ. Sci. Technol. 36:3290-3294. WHO, 1994. Environmental Health Criteria 162. Brominated diphenyl ethers. Geneva, Switzerland: International Program on Chemical Safety. WHO. Wilford, B.H., T. Harner, J. Zhu, M. Shoeib, and K.C. Jones. 2004. Passive sampling survey of polybrominated diphenyl ether flame retardants in indoor and outdoor air in Ottawa, Canada: implications for sources and exposure. Environ. Sci. Technol. 38:5312-5318. Wilderer, P.A., H.-J. Bungartz, H. Lemmer, M. Wagner, J. Keller, and S. Wuertz. 2002. Modern scientific methods and their potential in wastewater science and technology. Water Res. 36:370-393. Wu, S.Y., S.C. Chen, and M.C. Lai. 2005. Methanofollis formosanus sp. nov., isolated from a fish pond. Int. J. Syst. Evol. Microbiol. 55:837-842. Yu, X., C. Amrhein, M.A. Deshusses, and M.R. Matsumoto. 2007. Perchlorate reduction by autotrophic bacteria attached to zerovalent iron in a flow-through reactor. Environ. Sci. Technol. 41: 990-997. Yu, X., C. Amrhein, M.A. Deshusses, and M.R. Matsumoto. 2006. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron. Environ. Sci. Technol. 40: 1328-1334. Zhang, M, T.S.M. Wan, M. Fang, and F. Wang. 1997. Characterization of the non-volatile organic compounds in the aerosols of hong kong identification, abundance and origin. Atmos. Environ. 31: 22-237.
多環芳香烴化合物(polycyclic aromatic hydrocarbons,簡稱PAHs)主要是由兩個或兩個以上的苯環所組成,主要是經由不完全燃燒或是由石化燃料不完全燃燒所產生,在大自然環境中廣泛的流佈,其中napthalene是最簡單的芳香烴化合物。另一方面,多溴聯苯醚(polybrominated diphenyl ethers, 簡稱PBDEs)為目前環境新興有機污染物之一且在環境中常被監測到,但目前關於這些化合物在環境中的轉化並不是很了解,因此PBDEs的宿命備受到重視,尤其是在生物降解方面。
固相微萃取(soild-phase microextraction,簡稱SPME)為近年來發展迅速的一種免溶劑萃取技術,目前也廣泛應用在揮發性、半揮發性極不揮發性物質之分析,SPME的特點為在於萃取時不需使用任何溶劑,而且成本低、操作簡單、快速,具有高萃取效率、高度選擇性和兼具有純化、濃縮樣品。
本研究嘗試以固相微萃取分析方法檢測水體中的naphthalene與PBDEs。藉由polyacrylate(PA)與polydimethylsiloxane(PDMS)兩種不同的SPME纖維材質,以頂空方式間接萃取水體中的naphthalene與PBDEs後,以GC分析有機化合物濃度並計算萃取效率,並且進一步實驗有機化合物的萃取時間、萃取溫度、鹽類濃度等最佳化條件。溫度增加到60 ℃可以增加有機化合物的揮發程度,並可以減少與氣固相的平衡時間,而最適合的鹽分濃度為30 %。這些結果的線性範圍在0.9771到0.9976之間,偵測極限則為0.01 mg/L。整體而言,以85 μm PA萃取PBDE會比100 μm PDMS有較高的萃取效率,然而naphthalene則呈現相反的結果。根據上面結果可以得知,85 μm PA與100 μm PDMS可以適用於水體樣品的環境中以萃取環境有機污染物。
利用Pseudomonas putida 生物降解naphthalene, diphenyl ether 和一溴聯苯醚三種有機化合物,Pseudomonas putida 生物降解naphthalene在14天內共降解了70 %,在實驗期間也另外添加水楊酸鈉及FeCl3促進微生物分解naphthalene,10天內naphthalene降解速率常數為0.13 day-1,額外添加輔助因子水楊酸鈉及FeCl3的降解速率常數分別0.25 和0.16 day-1。從結果可得知水楊酸鈉及FeCl3皆是一個好的輔助因子。
在生物降解研究方面,利用酒廠好氧活性污泥與南投中興新村和台中黎明社區厭氧活性污泥進行一溴聯苯醚(4-monobrominated diphenyl)的生物降解。在好氧生物降解情況下,利用甲苯和diphenyl ether作為輔助碳源促進一溴聯苯醚的生物降解,結果證實,在甲苯與diphenyl ether兩種輔助碳源存在情況下,15天內共降解60 %與40 %,在實驗過程中沒有觀察到diphenyl ether,可能表示一溴聯苯醚在好氧情況下是被氧化的。在厭氧生物降解方面,利用厭氧活性污泥中的微生物降解一溴聯苯醚,在12天內大約降解30 %~80 %,生物降解一溴聯苯醚主要的副產物偵測到diphenyl ether,並且也偵測到溴離子的產生,表示脫溴過程是在厭氧情況下發生的。本研究進一步以分子生物方法探討降解前後之活性污泥菌群結構,以兩種厭氧活性污泥經變性梯度凝膠電泳篩選後,可辨識出許多不同相對位置的條帶以進行16S rDNA序列鑑定,在中興厭氧污泥降解一溴聯苯醚的部分篩選出11個不同的條帶;在黎明厭氧污泥降解一溴聯苯醚的部分篩選出10個不同的條帶,在兩個厭氧系統中均有篩選到與Clostridium sp. 相似度達70 %以上之菌株。研究結果顯示,厭氧污泥降解一溴聯苯醚過後,微生物菌相集中於某些菌群,這些菌群可能具有降解一溴聯苯醚之能力,表示不同厭氧活性污泥下馴養的降解菌群整體上有不同的菌群結構,其中包含相同的優勢菌群。
另外,也利用厭氧活性污泥降解十溴聯苯醚(Deca-BDE, BDE-209),經過半年的時間並沒有發現DBDE有明顯的變化,由此實驗結果顯示此兩種厭氧活性污泥沒有降解DBDE之能力,此外,本實驗額外添加0.025 g/mL與0.05 g/mL兩種劑量的微米級零價鐵(microscale zero-valent iron, MZVI)進行降解DBDE試驗,結果發現,微生物在0.025 g/mL MZVI系統下可以更有效的降解PBDEs,表示MZVI在降解DBDE過程中微生物同時可分解DBDE。在添加ZVI的系統中,在中興厭氧污泥降解十溴聯苯醚的部分篩選出6個不同的條帶;在黎明厭氧污泥降解十溴聯苯醚的部分篩選出5個不同的條帶,優勢菌群種類的數量少於降解一溴聯苯醚的數量,也許微生物菌群無法適應ZVI的存在或更多溴數之化合物對微生物也是一大毒害,相較之下可發現微生物會因為環境不同菌相也會有所不同,這些含溴聯苯醚的生物降解結果可以有助於了解這些化合物在環境中的宿命。

Polycyclic aromatic hydrocarbons(PAHs)are ubiquitous in our environment and come mainly from the incomplete combustion and pyrolysis of fossil fuels, organic materials, and wood. Napthalene (NAP)is the simplest fused polycyclic aromatic hydrocarbon. On the other hand, due to the wide distribution of polybrominated diphenyl ethers (PBDEs) flame retardants in the diverse environmental media in the world, the environmental fate of bromodiphenyl ethers is of interest. Currently, little is known about the transformation of these compounds, and in particular, about the microbial potential to degrade them.
A HS (headapace)-solid phase microextraction (SPME) has grown wide popularity in recently years for the analysis organic compounds in environmental samples. In this study, two kinds of commercially available fibers, 100 μm polydimethylsiloxane (PDMS) and 85 μm polyacrylate (PA), were evaluated through the extraction efficiency of NAP and PBDEs. The extraction time, extraction temperature and salt concentration of organic compounds were investigated for optimizing the SPME method. Increasing the temperature to 60 ℃ can increase the sensitivity of organic compounds and short the equilibrium time. The most suitable salt concentration was 30 %. The obtained regression coefficients are higher the 0.98. Detection limits of this method can be lower down to 0.01 mg/L.
In this study, the degradation of three kinds of biphenyl organic compounds (naphthalene, diphenyl ether and monobrominatediphenyl ether) by Pseudomonas putida was investigated. With P. putida, the naphthalene was degraded by 70 % of the original level in 14 days. In presence of P. putida within 10 days, the biodegradation rates of naphthalene only, naphthalene with sodium salicylate and naphthalene with FeCl3 were 0.13, 0.25, and 0.16 day-1, respectively. However, during 10 days, biodegradation efficiency of naphthalene with FeCl3 was more than that with sodium salicylate. One the other hands, the degradation of diphenyl ether is obvious but not for monobrominatediphenyl ether with P. putida.
For the biodegradation of 4-monobrominated diphenyl ether (4-BDE also call BDE-3), the degradation of 4-BDE was investigated with aerobic and anaerobic sludges. Under aerobic conditions, toluene and diphenyl ether were used as auxiliary carbon sources to stimulate the biodegradation of 4-BDE. The biodegradation of 4-BDE with toluene around 57 % is higher than that around 37 % with diphenyl ether and around 44 % with 4-BDE only at 15 days. No diphenyl ether was observed, indicating probably 4-BDE oxidized in the aerobic sludge. In anaerobic biodegradation, the removal of 4-BDE is about 30 %~80 % within 12 days by village's and community's anaerobic bacterial communities in their sludges. The main biodegradation byproducts of 4-BDE were determined to be diphenyl ether and bromide ions, indicating debromination process in these anaerobic sludges.
We investigated microbial degradation of mono-BDE by enriched anaerobic microbial consortia from Li-Ming and Chung-Hsing community anaerobic sludges. We used DGGE (denaturing gradient gel electrophoresis)to sieve 11 bands and 10 bands that were amplified from these bacterial 16S rRNA genes DNA by PCR(polymerase chain reaction) for the degradation experiments of PBDE from Chung-Hsing and Li-Ming anaerobic sludges, respectively. These microorganisms which may be able to degrade mono-BDE have different DGGE patterns. In both sludges, we found the Clostridium sp. which has the similarity about 70 % to 90 %. In these two anaerobic sludges, several microorgamisms disappeared after adding mono-BDE. Around 10 to 11 microorganism species have the tolerance or degradation ability for mono-BDE.
In addition, these anaerobic sludges can not degrade DBDE(deca-brominated diphenyl ether, BDE-209) in one half year incubation. To increase the removal efficiency, two additional dosages of 0.025 g/mL and 0.05 g/mL ZVI (microscale zero-valent iron) were added into these biodegradation systems. In existence of 0.05 g/mL ZVI, ZVI dominates the degradation process. Comparing to DBDE only and 0.025 g/mL ZVI only systems, the microorganisms can enhance the degradation efficiency of PBDEs in 0.025 g/mL ZVI system. It shows that the combined ZVI and anaerobic microorganisms can increase DBDE degradation ability. In the anaerobic microorganism-ZVI system, DGGE profiles of Li-Ming and Chung-Hsing sludges showed 5 and 6 bands corresponding to different species. The microbial diversity in biodegradation system for DBDE is smaller than mono-BDE. These better understandings of biological degradation of brominated diphenyl ether can facilitate the biodegradation and the fate of these chemicals in the environment.
其他識別: U0005-1504200919090300
Appears in Collections:土壤環境科學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.