Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28185
標題: 以質量平衡與重金屬毒性評估方法研究灌溉水質標準限值
A Study on the Standard Criteria of Irrigation Water Using Mass Balance Mehthod and Heavy Metal Toxicity Assessment
作者: 廖行一
Liao, Xing-Yi
關鍵字: 質量平衡;mass balance;灌溉水;重金屬;irrigation water;heavy metal
出版社: 土壤環境科學系所
引用: [1] 王國堅。2001。污水處理後提供灌溉以增加自來水水源之研究。碩士論文。逢甲大學土木及水利工程研究所。 [2] 王敏昭、張簡水紋、邱明浩。2008。灌溉水質對農地重金屬污染及水稻重金屬含量之影響。自然資源保育暨應用學術研討會論文集。95-103。台北。台灣。 [3] 台灣省農業藥物毒物試驗所。1999。農作物對重金屬的吸收。農作物中重金屬監測基準資料之建立。57-60。 [4] 行政院農委會。2001。灌溉排水營運管理。 [5] 行政院農業委員會。2005。灌溉用水水質標準修訂暨爭議項目檢討計畫。 [6] 行政院農業委員會。2006。灌排渠道水質監測及水路生態環境調查計劃。2:38-41。 [7] 行政院環境保護署。1991。桃園沿海地區農林作物受害原因調查報告。 [8] 李玉英。1985。重金屬銅、鋅和鎘在土壤中的移動。中興大學土壤學研究所碩士論文。 [9] 李錦地、梁壽政。2001。再生水利用系統之規劃及推動。工業污染防治。77:109-121。 [10] 吳佳鴻、林美惠、嚴煒舜、鄭成輝、陳一銘、李奇旺。2005。零價鐵流體化反應器對地下水中污染物去除之研究。論文集。淡江大學水資源及環境工程研究所。 [11] 吳啟堂、陳盧、王廣壽。1999。水稻不同品種對Cd吸收累積的差異和機理研究。生態學報。19(1):105-107 [12] 邱明浩。2007。灌溉水質對農地重金屬污染及水稻重金屬含量之影響。碩士論文。朝陽科技大學環境工程與管理研究所。 [13] 林清傑。1995。灌溉水中電導度及鈉吸著率對土壤及作物影響之研究。碩士論文。國立臺灣大學農業工程學研究所。 [14] 徐玉標。1980。灌溉水質及污染防治。台灣農家要覽。47:1541-1559。 [15] 張尊國、徐玉標、徐貴新。1994。灌溉水質管理策略之研究。台灣省環保處。 [16] 黃富美。2003。重金屬污染土壤對作物生長與根圈土壤低分子量有機酸之影響。碩士論文。國立中興大學生命科學研究所。 [17] 陳志德、仲維功、楊杰、王才林、王軍、張永春。 2008。不同水稻品種在Cd、As和Hg脅迫下的吸收積累特性。期刊論文。中國農學通報。24(2)。 [18] 彭德昌。1998。灌溉水質遭受污染對農作物生產之影響,花蓮區農業專訊。23:18-19。 [19] 盧國興。2006。灌排渠道水質監測及水路生態環境調查計畫,行政院農委會。2:38-46 [20] 廖雯慧。1999。鎘在水-土-水稻中之空間變異與分佈動態。碩士論文。國立台灣大學農業工程學研究所。 [21] 簡士傑。1990。碩士論文。灌溉水中氮素濃度對水稻生育之影響。 [22] 蔡明華、陳守強。1987。灌溉用水防止污染問題之研究。行政院農委會。 [23]顏正中。1996。本省主要土類土壤鉀有效性之評估。國立中興大學土壤環境科學系碩士論文。 [24] 謝適旬。1998。不同肥料管理下對水稻、玉米輪作之生長特性與產量的影響。碩士論文。國立中興大學土壤環境科學研究所。 [25] 謝文彪、楊軍華、陳穗玲、陳迪云。2008。福建沿海水稻Cd、Pb、Hg等重金屬含量變化規律,生態環境。17(1)。 [26] 羅秋雄、張金城。1987。作物施肥手冊,行政院農委會農糧署。 [27] 蔣彬、張慧萍。2002。水稻精米中鉛鎘砷含量基因型差異的研究。22(3)。 [28] 經濟部水利署。1996。台灣省政府公告八五府建水字第146504號。 [29] Alegue, J. D. and A. Gnauck. 2007. Evaluating water quality standards through time series modeling by wavelets. J Environ Sci Eng. 10: 471-481. [30] Allaire-Leung, S. E., L. Wu, J. P. Mitchell, and B. L. Sanden. 2001. Nitrate leaching and soil nitrate content as affected by irrigation uniformity in a carrot field. Agr. Water Manag. 48(1): 37-50. [31] Almeida, C. and S. 2007. Quintar. assessment of irrigation water quality. a proposal of a quality profile. Environ Monit Assess. 142(3): 149-152. [32] Awode, U. A., A. Uzairu, M. L. Balarabe, G. F. S. Harrisson, and O. J. Okunola. 2008. Assessment of peppers and soils for some heavy metals from irrigated farmlands on the bank of river Challawa, Northern Nigeria. Pakistan J Nutr. 7(2): 244-248. [33] Azevedo, A. S., L. S. Pereira, and R. S. Kanwar. 2002. Assessment and simulation of atrazine in irrigated soils. Irrigation and Drainage. 51(3): 257-264. [34] Aziz, O., A. Inam, and Samiullah. 2004. Utilization of petrochemical industry waste water for agriculture. Water Air Soil Pollut. 115(4): 321-335. [35] Bienvenu, P., C. Nofre, and A. Cier. 1963. Toxicite generale compareedes ions metalliques. Compt. Rendus. Akad. Sci. 256(4): 1043-1044. [36] Blake, J. 1839. Memoire sur les effets de diverses substances salines injectees dans le systeme circulatoire. Arch Gen Med Chem. 6: 289–300. [37] Bonomo, L., C. Nurizzo, and E. Rolle. 1999. Advanced wastewater treatment and reuse: related problems and perspectives in italy. Water Sci. Technol. 40(4): 21-28. [38] Botkin, S. 1885. Zur frage uber den zusammenhang der physiologischen wirkung mit den chemischen eigenschaften der alkali-metalle der ersten gruppe nach mendelejeff. Centralbl Med Wiss. 48: 849–864. [39] Bunel, F., J. Carre, M. Legeas, and M. Etienne. 1995. The possible reuse of wastewater treated by lagooning for the irrigation of field crops. Water Sci. Technol. 31(12): 409-416. [40] Cao, W., G. Zhang, Z. Miao, and S. Dan. 2000. Otolith morphology with the application in species and stock discrimination of cyprinid species. The Third World Fisheries Congress Abstracts Book. p. 413. In The Third World Fisheries Congress abstracts books. Beijing, P. R. China. [41] Cassel S. F., S. Sharmasarkar, S. D. Miller, G. F. Vance, and R. Zhang. 2001. Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets. Agric Water Manage. 46: 241–251. [42] Chang, C. A., G. Pan, A. Page, and T. Asano. 1996. Developing human health-related chemical guidelines for reclaimed wastewater irrigation. Wat. Sci. Tech. 33: 463-472. [43] Chiou, R. J. 2007. Risk assessment and loading capacity of reclaimed wastewater to be reused for agricultural irrigation. Environ Monit Assess. 142(3): 255-262. [44] Cullen, A. C. 1995. The sensitivity of probabilistic risk assessment results to alternative model structures - a case study of municipal waste incineration. J Air Waste Manag Assoc. 45(7): 538-546. [45] Danielli, J. F. and J. T. Davis. 1951. Reactions at interfaces in relation to biological problems. Adv Enzymol Relat Subj Biochem. 11:35–89. [46] Davison, K., K. K. Mann, and W. H. J. Miller. 2002. Arsenic triojicde: Meehanism’s of action. Semin Hematol. 39(2): 3-7. [47] Dudka, S. and W. P. Miller. 1999. Permissible concentration of arsenic and lead in soils based on risk assessment. Water Air Soil Pollut. 113: 127-132. [48] Enache, M., P. Palit, J. C. Dearden, and N. W. Lepp. 2000. Correlation of physico-chemical parameters with toxicity of metal ions to plants. Pest Manag. Sci. 56(9): 821–824. [49] Ferreyra, R. E., A. U. Aljaroa, R. S. Ruiz, L. P. Rojas, and J. D. Oster. 1997. Behavior of 42 crop species grown in saline soils with high boron concentrations. Agr. Water Manag. 34(2): 111-124. [50] Finley, B., V. Lau, and D. Paustenbach. 1992. Using an uncertainty analysis of direct and indirect exposure to contaminated groundwater to evaluate EPA''s MCLs and health-based cleanup goals. J. Hazard. Mater. 32: 263-274. [51] Gallegos, E., A. Warren, E. Robles, E. Campoy, A. Calderon, M. G. Sainz, P. Bonilla, and O. Escolero. 1999. The effects of wastewater irrigation on groundwater quality in mexico. Wat. Sci. Tech. 40:45-52. [52] Geng, F., Y. Wu, and Z. Qu. 2006. Environmental health risk assessment for carcinogenic pollutants based on uncertainty theory. Water Resources and Power. 5: 5-7. [53] Gomes, J. and O. Faugeras. 2001. Using the vector distance functions to evolve manifolds of arbitrary codimension. Lect Notes Comput Sci. 2106: 1-13. [54] Greenway, H., and R. Munns. 1980. mechanism of salt tolerance in nonhalophytes. Annu Rev Plant Physiol. 31: 149~190. [55] Hamilton, A. J., F. Stagnitti, R. Premier, A.-M. Boland, and G. Hale. 2006. Quantitative microbial risk assessment models for consumption of raw vegetables irrigated with reclaimed water. Appl. Environ. Microbiol. 72(5): 3284-3290. [56] Heald, F. D. 1896. On the toxic effect of dilute solutions of acids and salts upon plants. Bot Gaz. 22: 125–153. [57] Heredia, S. O. and Cirelli, A. F. 2007. Groundwater chemical pollution risk: assessment through a soil attenuation index. Environ Geol. 53(6): 1345-1351 [58] Huang, Z. B., Z. X. Miao, L. W. Hou, Z. H. Jiao, and M. Ma. 2007. Effect of irrigation time and mode with reclaimed water on growth and quality of crops. Nong Ye Huan Jing Ke Xue Xue Bao, 26(6): 2257-2261 [59] Huong, N., M. Ohtsubo, L. Li, T. Higashi, and M. Kanayama. 2008. Assessment of the water quality of two rivers in Hanoi City and its suitability for irrigation water. Water Environ. Res. 6(3): 257-262. [60] Jensen, P. K., G. Jayasinghe, W. van der Hoek, S. Cairncross, and A. Dalsgaard. 2004. Is there an association between bacteriological drinking water quality and childhood diarrhoea in developing countries. Trop. Med. Int. Health. 9(11): 1210-1215. [61] John, D. W., E. Monica, and C. D. John, 2006. Quantitative cationic activity relationship for predicochemical properties and natural occurrence levels. QSAR Comb. Sci. 26(4): 522-527. [62] John, T. M., M. C. Newman, and S. B. Clark, 1996. Predicting the relative toxicity of metal ions using ion characteristics: Microtox® bioluminescence assay. Environ Qual Saf, 15(10): 1730-1737. [63] Joseph, D. R. and S. J. Meltzer. 1909. The comparative toxicity of the chlorides of magnesium, calcium, potassium, and sodium. J Pharmacol. 1:1–26. [64] Jung, M. C. 2008. Heavy metal concentrations in soils and factors affecting metal uptake by plants in the vicinity of a Korean Cu-W mine. Senors. 8(4): 2413-2423. [65] Kahlenberg, L. and R. H. True. 1896. On the toxic action of dissolved salts and their electrolytic dissociation. Bot. Gaz. 12: 81–124. [66] Kamra, S. K., K. Lal, O. P. Singh, and J. Boonstra. 2002. Effect of pumping on temporal changes in groundwater quality. Agr. Water Manag. 56(2): 169-178. [67] Khalequzzaman, M. D., F. S. Faruque, and A. K. Mitra. 2005. Assessment of arsenic contamination of groundwater and health problems in bangladesh. Int. J. Environ. Res. Public Health, 2(2): 204–213. [68] Khangarot, B. S. and P. K. Ray. 1989. Investigation of correlation between physico-chemical properties of metals and their toxicity to the water flea Daphnia magna Straus. Ecotoxicol Environ Saf. 18:109–120. [69] Kuchanwar, O. D., C. K. Kale, V. P. Deshpande, and D. M. Dharmadhikari, 1999. Irrigation weter quality and farm management decisions. Water Sci. Tech., 40(2): 97-103. [70] Kumar, M., K. Kumari, A. L. Ramanathan, and R. Saxena. 2007. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environ Geol. 53(3): 553-574. [71] Lentz, R. D., R. E. Sojka, and D. L. Carter. 1996. Furrow irrigation water-quality effects on soil loss and infiltration. Soil Sci Soc Am J. 60: 238-245. [72] Lioy, P. J. 1990. Assessing total human exposure to contaminants. Environ. Sci. Technol. 24(7): 938-945. [73] Liu, W. X., L. F. Shen, J. W. Liu, Y. W. Wang, and S. R. Li. 2007. Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull. Environ. Contam. Toxicol. 79(2): 209–213. [74] Liu, X., J. Wu, J. Xu, 2006. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ. Pollut. 141(2): 257-264. [75] Li, Y., H. Liu, F. Zhang, C. Fu, and X. Lai, 2007. Assessment on the effect of irrigation technology on soil salinization in Mana s River valley , Xinjiang. J. Northeast Agric. Univ. 12(1): 22-26. [76] Lui, W.-X., H.-H. Li, S. R. Li, Y.-W. Wang. 2006. Heavy metal accumulation in edible vegetables cultivated in agricultural soil in the suburb of Zhengzhou City, People’s Republic of China. Bull. Environ. Contam. Toxicol. 76:163–170. [77] Manoliadis, O. G. and K. I. Vatalis. 2003. An environmental impact assessment decision analysis system for irrigation systems. Int. J. Environ. Stud. 5(2): 65-70. [78] Mathews, A. P. 1902. The nature of nerve stimulation and of changes in irritability. Science. 15(378): 492–498. [79] Ma, W. F., X.-H. Zhao, and H. Y. Wang. 2004. Fuzzy optimal allocation of reclaimed and natural water resources for agricultural irrigation. Nong Ye Huan Jing Ke Xue Xue Bao. 27(3): 1672-2043. [80] Maxwell, R. M., S. D. Pelmulder, A. F. B. Tompson, and E. K. William. 1998. On the development of a new methodology for groundwater-driven health risk assessment. Water Resour. Res. 34(4): 833-847. [81] Monica, E., C. D. John, and D. W. John. 2003. QSAR analysis of metal ion toxicity data in sunflower callus cultures(Helianthus annuus “Sunspot”). QSAR Comb. Sci. 22(2): 234-240. [82] Murzaeva, S. V. 2004. Effect of heavy metal on wheat seedlings: activation of antioxidant enzymes. Appl. Biochem. Microbiol. 40(1): 98–103. [83] Mvungi, A., D. Mashauri, and N. F. Madulu. 2005. Management of water for irrigation agriculture in semi-arid areas: problems and prospects. Physics and Chemistry of the Earth. 30(11-16): 809–817. [84] Okoronkwo, N. E., J. C. Igwe, and E. C. Onwuchekwa. 2005. Risk and health implications of polluted soils for crop production. Afr. J. Biotechnol. 4(13): 1521-1524. [85] Pelmulder, S. D. and W. G. Yeh. 1996. Regional scale framework for modeling water resources and health risk problems. Water Resour Res. 32(6): 1851-1861. [86] Peter, K. J., M. Yutaka, W. van der Hoek, and C. Sandy. 2001. Limitations of irrigation water quality guidelines from a multiple use perspective. Irrigation and Drainage Systems. 15(2): 117-128. [87] Radcliffe, J. C. 2004. Water recycling in Australia. Australian Academy of Technological Sciences and Engineering. pp. 134-212. [88] Reckhow, K. H. 1994. Water quality simulation modeling and uncertainty analysis for risk assessment and decision making. Ecol Modell. 72: 1-20. [89] Richet, C. 1881. De la toxicite´ compare´e des differents metaux. CR Acad Sci Paris. 93:649–651. [90] Roffman, A., H. Roffman. 2004. Effects of salt water cooling tower drift on water bodies and soil. Water Air Soil Pollut. 2(4): 457-471. [91] Sadeghi A. M., A. R. Isensee, and A. Shirmohammadi. 2000. Influence of soil texture and tillage on herbicide transport .Chemosphere. 41(9): 1327-1332. [92] Saha, A., A. Sandage, F. Thim, L. Labhardt, G. A.Tammann, J. Christensen, N. Panagia, and F. D. Macchetto. 2001. ApJ. 551(2): 973. [93] Seifriz, W. 1949. Toxicity and the chemical properties of ions. Science. 110: 193–196. [94] Shuval, H. I., A. Adin, B. Fattal, E. Rawitz, and P. Yekutiel. 1986. Wastewater irrigation in develpoing countries: health effects and technical solutions. 51(6): 307-324. [95] Smith, C. J., P. Hopmans, and F. J. Cook. 1996. Accumulation of Cr, Pb, Cu, Ni, Zn, and Cd in soil following irrigation with treated urban effluent in Australia. Environ. Pollut. 94:317-323. [96] Sridhara Chary, N., C. T. Kamala, and D. Samuel Suman Raj. 2007. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69(3): 513-524. [97] Tatara, C. P., M. C. Newmanc, J. T. McCloskeya, and P. L. Williamsd. 1998. Use of ion characteristics to predict relative toxicity of mono-, di- and trivalent metal ions: Caenorhabditis elegans LC50. Aquat. Toxicol. 42: 255-269. [98] Tichy, M. and M. Krivucova. 1976. Use of structure-activity relationships to estimate toxicity of inorganic cations. In Tichy M, ed, Quantitative Structure-Activity Relationships. Akademiai Kiado, Budapest, Hungary, pp 83–84. [99] Turner, J. E. M. W. Williams, K. B. Jacobson, and B. E. Hingerty. 1984. Correlations of acute toxicity of metal ions and the covalent/ionic character of their bonds. In Tichy M, ed, QSAR in Toxicology and Xenobiochemistry. Elsevier, Amsterdam, The Netherlands, pp 171–178. [100] Wen, X., Q. Du, and H. Tang. 1998. Surface complexation model for the heavy metal adsorption on natural Sediment. Environ. Sci. Technol. 32(7): 870-875. [101] Williams, M. W. and J. E. Turner. 1981. Comments on softness parameters and metal ion toxicity. J Inorg Nucl Chem. 43:1689–1691. 【網站】 [102] 行政院環保署: 經濟部水利處。1991。 http://www.epa.gov.tw/ [103] 科羅拉多州:Irrigation Water Quality Criteria, 2005. http://www.ext.colostate.edu/pubs/crops/00506.html#top [104] 內部拉斯加州:Irrigating for Maximum Economic Return with Limited Water, 1977.http://ianrpubs.unl.edu/water/g1422.htm http://ianrpubs.unl.edu/water/g328.htm [105] 華盛頓州:Establishing Surface Water Quality Criteria For the Protection of Agricultural Water Supplies, 2002. [106] 密西西比州:Irrigation Water Quality Guidelines For Mississippi, 1914. http://msucares.com/pubs/publications/p1502.htm [107] 德州:Irrigation Water Quality, 1914. http://tcebookstore.org/pubinfo.cfm?pubid=1542 http://tcebookstore.org/pubinfo.cfm?pubid=94 [108] 澳洲:Impacts on soil,groundwater and surface water from continued irrigation of food and turf crops with water reclaimed from sewage, 2004. http://www.deh.gov.au/water/quality/nwqms/volume3.html
摘要: 
Due to the annual precipitation difference in Taiwan, agriculture development relies on irrigation, and water quality has tremendous influence. In the past, we mainly took irrigation water quality standards of United States as reference to set up our own. However, the applicability of those standards we completely imitate is not in accordance with any theory. In this study, Mass Balance and toxicity assessment are mainly used. The standard criteria, which conform to Taiwan’s, are established and theoretical based. The concept of Mass Balance is that the input of an element is equivalent to the output of it. Biological factor is mainly direct to the food corporations of rice; climate factor is mainly direct to the effective rainfall and dilution factor. In soil factor, elements have been fixed, leached and adsorbed with different clay. The above three were combined to estimate the standard criteria of irrigation water, and then we can establish one theoretical based criteria. Nitrogen: 6.60-125.12、Phosphorus :6.33-148.07、Potassium 1.91-10.18、Zinc 0.00-7.35、Lead 0.00-0.25、Copper 0.01-0.37、Arsenic 0.00-2.30、Cadmium 0.00-0.24、Nickel 0.00-0.27、Selenium 0.00-0.03、Manganese 0.03-1.67、Iron 0.00-21.35 mg/L. To supplement the deficiency of toxicity, six heavy metal parameters were used to estimate it. Among them, Hydrolysis, Hydration, and Ionization Energy were more influential than others. They could affect absorption of heavy metal, ion-exchange properties, biological toxicity, precipitation, and bonding capacity; moreover, the metal formation would be changed to different types. Today’s renewable water sources mostly come from the sanitation waste. If we want to use it for agricultural irrigation, we have to consider the process of disposing pathogens, risk analysis of virus, heavy metal, and other toxic substances. On the other hand, the environment and the hidden risks caused by human health must be considered. We should reject recycling polluted industrial wastewater in order to avoid secondary pollution and impacts on human health. In future development, this method will be able to set the standard criteria for irrigation water quality and suggested indicators. This will also ensure the balance of the environment. Furthermore, the regional irrigation water quality standards will be set up as a feasible scheme.

台灣地區由於雨量分佈不均,農作事業仰賴著灌溉模式,使得灌溉水對農業有著巨大的影響。過去台灣所使用的灌溉水質標準主要是參考美國之標準,以此所制定出來的灌溉水質標準套用於台灣地區的適用性卻無一理論可依據。本研究主要利用質量平衡以及毒性評估方法,建立一個符合台灣地區且具有學理依據的標準限値,質量平衡(Mass Balance)方法為一個元素輸入等於元素輸出的概念,主要的糧食作物以稻米為主,考慮氣候所影響的有效雨量與稀釋因子,元素在土壤中被固定、淋洗以及不同黏粒所造成之吸附情形,結合三者來對灌溉水限値進行評估,最後建立出一組具有學理依據的灌溉水質標準限値: 氮6.60-125.12、磷6.33-148.07、鉀1.91-10.18、鋅0.00-7.35、鉛0.00-0.25、銅0.01-0.37、砷0.00-2.30、鎘0.00-0.24、鎳0.00-0.27、硒0.00-0.03、錳0.03-1.67、鐵0.00-21.35 mg/L。元素毒性的評估上,以六項重金屬參數進行評估,其中以水解常數、水合能以及游離能的影響最大,其性質影響了重金屬的吸附特性、離子交換特性、生物毒性、沉澱作用以及重金屬之間的鍵結,而形成了不同的金屬型態,藉此來補足質量平衡(Mass Balance)中缺乏的毒性問題。現今的廢水回收再利用上,廢水來源多為衛生廢棄物,若用於農業灌溉時,必需先考慮到致病菌之處理程、病毒的風險分析以及重金屬及其它毒性物質的風險分析。另一方面,考慮人體健康以及環境生態造成潛在的風險,在回收廢水時,應拒絕回收高污染性的工業廢水,避免回收廢水再利用時,產生二次汙染以及影響人體健康之情形。在未來的發展,將可以此計算法為灌溉水質之制定或建議指數,來確保環境的平衡,最後利用此建立地區性的灌溉水質標準可行性計畫方案。
URI: http://hdl.handle.net/11455/28185
其他識別: U0005-1507200910353400
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.