Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2819
標題: 勞倫茲力驅動的磁場微感測器之設計與製作
Design and Fabrication of Magnetic Microsensors Actuated by Lorentz Force
作者: 謝瑱軒
Hsieh, Chen-Hsuan
關鍵字: 磁感測;Magnetic sensor;CMOS;勞倫茲力;電容式;Lorentz force;Capacitive;CMOS
出版社: 機械工程學系所
引用: [1] http://www.eettaiwan.com/ART_8800578170_876045_NT_3ff322da.HTM [2] http://www.eettaiwan.com/ART_8800673219_480502_NT_d7445273.HTM [3] J. Lenz, A. S. Edelstein “Magnetic sensors and their applications,” IEEE Sensors Journal, Vol. 6, No. 3, pp.631-649, 2006. [4] R. Popovic, R. Widmer, “Magnetotransistor in CMOS technology,” IEEE Transaction on electron Device, Vol. 33, No. 9, pp. 1334-1340, 1986. [5] C. Leepattarapongpan, T. Phetchakul, N. Penpondee1, P. Pengpad, A. Srihapat, “The low power 3D-magnetotransistor based on CMOS technology,” IEEESensors, pp. 500-503, 2011. [6] M. R. Kirchhoff, S. Bu‥ttgenbach, “MEMS fluxgate magnetometer for parallel robot application,” MicrosystTechnol, Vol, pp. 787–790, 2010. [7] C. L. Kang, G. Liu, J. Z. Yang, “Electroplating a magnetic core for micro fluxgate sensor,” MicrosystTechnol, Vol. 15, pp.413–419, 2009. [8] P.D. Dimitropoulos, J.N. Avaritsiotis, E. Hristoforou “A novel micro-fluxgate sensor based on the AMR effectof ferromagnetic film-resistors,” Sensors and Actuators A, Vol. 107, pp. 238–247, 2003. [9]J.W. Kang, H. Gucke, Y. Ahn “Amplitude detecting micromechanical resonating beam magnetometer,” IEEE, pp.372-377, 1998. [10]V. Beroulle, Y. Bertrand, L. Latorre, P. Nouet, “Monolithic piezoresistive CMOS magnetic field sensors,” Sensors and Actuators A, Vol. 103, pp. 23–32, 2003. [11]B. Bahreyni, C. Shafai, “Resonant micromachined magnetic field sensor,” IEEE Sensors Journal, Vol. 7, No. 9, pp. 1326-1334, 2007. [12]D. Ren, L. Wu, M. Yan, M. Cui, Z. You, M. Hu “Design and analyses of a MEMS based resonant magnetometer,” Sensors, Vol. 9, pp. 6951-6966, 2009. [13]J. Chen, M. Qin, Q. A. Huang, “Detecting magnetic field direction by a micro beamoperating in different vibration modes,” Chin. Phys. B, Vol. 20, No. 9, pp.1-6, 2011. [14]F. Keplinger, S. Kvasnica, A. Jachimowicz, F. Kohl, “Lorentz force based magnetic field sensor with optical readout,” Sensors and Actuators A,Vol. 110, pp. 112-118, 2004. [15]M.J. Thompson, M. Li, and D.A. Horsley, “Low power 3-axis Lorentz force navigation magnetometer,”IEEE Micro Electro Mechanical Systems, pp. 593-596, 2011. [16]A.L. Herrera-May, P.J. Garcia-Ramirez, L.A. Aguilera-Cortes, E. Figueras, J. Martinez-Castillo, “Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution,” Sensors and Actuators A, Vol.165,pp. 399–409, 2011. [17]M. J. Thompson, D. A. Horsley, “Parametrically amplified Z-axis,” Journal of Microelectromechanical Systems, Vol. 20, No. 3, pp. 702-710, 2011. [18]S. M. Dominguez-Nicolas, R. Juarez-Aguirre, P. J. Garcia-Ramirez, “Signal conditioning system with a 4–20 mA output for a resonant magnetic field sensor based on MEMS technology,” IEEE Sensors Journal, Vol. 12, No. 5, pp.935-942, 2012. [19] O. Cugat, J. Delamare, G. Reyne “Magnetic micro-actuators and systems (MAGMAS),” IEEE Transaction on Magnetics, Vol. 39, No. 5, pp. 3607-3612, 2003. [20]C. H. Ahn, M. G. Allen, “Micromachined planar inductors on silicon wafers for MEMS applications,” IEEE Transaction on Industrial Electronics, Vol. 45, No. 6, pp. 866-876, 1998. [21]T. Ohji, T. Shinkai, K. Amei, M. Sakui, “Application of Lorentz force to a magnetic levitation system for a non-magnetic thin plate,” Journal of Materials Processing Technology, Vol. 181, pp. 40-43, 2007. [22]O. Cugat, S. Basrour, C. Divoux, P. Mounaix, G. Reyne, “Deformable magnetic mirror for adaptive optics: technological aspects,” Sensors and Actuators A, Vol. 89, pp.1-9, 2001. [23]I. J. Cho, E. Yoon, “A low-voltage three-axis electromagnetically actuated micromirror for fine alignment among optical devices,”Journal of Micromechanics and Microengineering, Vol. 19, pp. 1-8, 2009. [24]http://www.google.com/patents/US20110241809 [25] D. K. Cheng, “Field and Wave Electromagnetic Second Edition,” Addison-Wesley, 1989. [26]M. H. MdKhir, P. Qu, H. Qu, “A low-cost CMOS-MEMS piezoresistive accelerometer with large proof mass,”Sensors, Vol. 11, pp. 7892-7907, 2011. [27]高斌栩, CMOS-MEMS 微鏡面陣列與可調式微共振器, 國立中興大學博士論文, 2010. [28]楊志偉, 含感測電路的整合型微壓力感測器, 國立中興大學碩士論文, 2006. [29]O. Cugat, G. Reyne1, J. Delamare1, H. Rostaing, “Novel magnetic micro-actuators and systems (MAGMAS) using permanent magnets”Sensors and Actuators A, Vol. 129, pp.265-269, 2006MG [30]W. C. Tang, T. H. Nguyen, R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” sensors and actuators, pp.25-32, 1989. [31]微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中興 [32]BehzardRazavi, Design of Analog CMOS Integrated Circuits, McGraw Hill
摘要: 
近幾年磁場感測器已經大量被運用於工業監測與生活應用中,以汽車舉例來說一輛平均使用10個磁場感測器,這些感測器使用在包括油門控制、煞車系統與引擎點火系統等方面,另外日新月異的智慧型手機所搭載的GPS定位系統,也是磁場感測器的一大市場,在未來將更進一步發展到空間監測,例如能夠監測大樓裡的人員移動,或者是馬路上的車流量等等。磁場感測具有非接觸的優勢,提升了各種應用的可能性,因此未來磁場感測器的市場需求將不斷過大。
本研究利用勞倫茲力的原理,以移動的帶電粒子在磁場中產生偏移的現象,設計與製作一個感測Z軸方向的磁場感測器,感測結構由彈簧與梳指狀電極所組成,對不同的設計結構進行模擬與分析,由結果中找到最佳的設計,使得感測器通入電流時,產生的熱膨脹得以改善,且增加勞倫茲力所能驅動的位移量,並且以CMOS-MEMS的方式來實現設計,利用TSMC 0.35μm 2P4M製程來製作感測晶片,並經過後製程處理改善晶片的殘留應力,此感測器以電容式來偵測勞倫茲力所造成之結構位移,並透過後端的感測電路將電容訊號讀出。選用成熟的CMOS製程,有利於同時將感測電路設計於同一晶片上,此種整合感測結構與電路的感測器,除了能改善一些感測器本身的寄生效應外,同時也能夠降低製造成本。由實驗結果顯示,當感測器驅動電流為40 mA時,其靈敏度為8.4 V/T。

Magnetic field sensors play an important role in consuming electronic products and industry applications. For instance, a car has over ten magnetic sensors, and they apply in anti-lock braking system, ignition system and gas pedal control, etc. In addition, magnetic sensors are also applied in the global position system of smart phone. In the future, magnetic sensing technology is possible to use for spacing monitor such as monitor people in a building or traffic in the city. With rapid technological advancement, magnetic sensors have great development potential with its non-contact characteristic.
This study develops a magnetic sensor based on the Lorentz force. The sensor is composed of interdigitated electrodes and springs. The interdigitated electrodes are supported by the springs. The magnetic sensor is capacitive type, and the interdigitated electrodes are designed as a differential capacitance. When the magnetic sensor senses a magnetic field, the interdigitated electrodes actuated by the Lorentz force generate a change in displacement, resulting in the capacitance of the sensor varies. A sensing circuit is used to convert the capacitance variation of the sensor into the output voltage. The magnetic sensor was fabricated using the commercial TSMC (Taiwan Semiconductor Manufacturing Company) 0.35μm CMOS (complementary metal oxide semiconductor) process. A post-process was employed to release the suspended structure and reduce the residual stress of the structure. The post-process is compatible with the commercial CMOS process, so the sensor has a potential for integration with circuitry on chip. The experimental results showed that the magnetic sensor had a sensitivity of 8.4 V/T when applying a current of 40 mA.
URI: http://hdl.handle.net/11455/2819
其他識別: U0005-2008201314475700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.