Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28203
標題: 重金屬污染土壤客土稀釋整治對野莧生長影響
The effect of dilution remediation of heavy metal polluted soils on the growth of Amaranthus viridis L.
作者: 侯昇松
Hou, Seung Song
關鍵字: contaminated soil;污染土;Amaranthus viridis L.;rhizosphere;野莧;根圈
出版社: 土壤環境科學系所
引用: 王銀波。1985。 重金屬鉻、銅、鋅、鎘、鉛對作物毒性之研究。 公害對農業生產之影響研討會論文專集。 台灣省毒物藥物試驗所印行。 p. 105-118。 王銀波。1988。 台灣農田重金屬污染。 中國農業工程學會77年度學術研討會農業環境污染與管理論文集。 p. 1-8。 江致民。2006。中性及鹼性污染土中重金屬和磷酸根結合及酸洗型態之研究。國立中興大學土壤學研究所碩士論文。 朱德民。 1990。 植物與環境逆境。 國立編譯館。 何念祖、孟賜福。1987。 植物營養原理。 上海科學技術出版社。 李豔琪。1989。 銅、鉛污染不同土類對作物之影響。 國立中興大學土壤學研究所碩士論文。 林浩潭。 1991。 以作物中重金屬容許含量推算土壤中重金屬容許含量之探討。 國立中興大學土壤學研究所碩士論文。 林浩潭、李國欽、賴國仙。1992。台灣地區不同作物對土壤重金屬吸收之探討。第三屆土壤污染防治研討會論文集。 林浩潭、陳素文、沈季蓉、翁愫慎。2005。重金屬污染土壤以本土植物復育之探討。植保會刊47:241-250。 初建、王敏昭。1999。重金屬於其污染土壤之固相型態。中國農業化學會誌。37(1):32-41。 洪肇嘉。1993。 電動法清除土壤中污染重金屬之研究。第八屆廢棄物處理技術研討會論文集。台北市。p. 536-569。 翁誌煌、林裕雄、陳耀升。1997。 以電滲透法處理受鎘污染之土壤。第五屆土壤污染防治研討會—污染土壤之整治復育技術論文集。 p. 323-342. 陳尊賢(主編)。 陳尊賢、駱尚廉、吳先琪。1994。 桃園鎘污染農業土壤之綜合性再分析與評估。 行政院科技顧問組委託計劃期中報告。 p. 72。 陳慶和、邱英嘉、黃富昌、周鴻文、蔡玉堂、陳合貴。2002。翻土稀釋法處理鎘鉛重金屬污染農田之整治成效研究。第一屆海峽兩岸土壤及地下水污染整治研討會論文集。B1-B9。 張尊國、徐玉標、吳先琪。1991。 受重金屬污染土壤復育技術之研究-土壤淋洗。 行政院環保署委託計畫(EPA-80-E3H1-09-04)報告。台北市。 張添晉、陳尊賢、章裕民、林鎮洋、林啟燦、林獻山、陳致谷、林宗恒、王秀蘭。1997。 土壤污染改善技術參考指引彙編。 行政院環保署委託計畫報告。台北市。 劉玉雪、徐玉標。1985。 鎳鉻對水稻生長之影響。 公害對農業生產之影響研討會論文集。p91-104。 駱尚廉。 1997。 環境保護辭典。茂昌圖書有限公司。 241p。 環保署環境檢驗所。2009。土壤酸鹼值(pH 值)測定方法-電極法。NIEA S410.62C。 環保署環境檢驗所。2002。土壤水分含量測定方法-重量法。NIEA S280.61C。 環保署環境檢驗所。1994。土壤中陽離子交換容量─醋酸銨法。NIEA S201.60T。 環保署環境檢驗所。2003。水中磷檢測方法-分光光度計/維生素丙法。NIEA W427.52B。 環保署環境檢驗所。1998。沈積物、污泥及油脂中金屬元素總量之檢測方法-微波消化原子光譜法。NIEA R355.00C。 環保署環境檢驗所。2003。土壤中重金屬檢測方法-王水消化法。NIEA S321.63B。 Alloway, B. J. 1990. The origions of heavy metals in soils. p. 29-39. In B. J. Alloway(ed.)Heavy metals in soils. John Wiley and Sons, New York. Alloway, B. J. 1995. Heavy metals in soils. Blackie Academic and Professional, Glasgow. p. 11-31. Alomary, A. A. and S. Belhadj. 2007. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environ Monit Assess 135:265-280. Angelone, M., and C. Bini. 1992. Trace elements concentrations in soils and plants of western Europe. p. 19-60. In D. C. Adriano(ed.)Biogeochemistry of trace metals. Lewis Publishers, Boca Raton. Assche, F., and H. Clijsters. 1990. Effects of metals on enzyme activity in plants. Plant Cell Environ. 25: 1-15. Baker, A. J. M., and R. R. Brooks. 1989. Terrestriak highter plants which can hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery. 1: 81-126. Baker, A.J.M., S.P. McGrath, C.M.D. Sidoli, and R.D. Reeves. 1994. The possibility of in situ heavy metal decontamination of polluted soil using crops of metal-accumulating plants. Resources, Conservation and Recycling. 11: 41-49. Baker, D. E., and M. C. Amacher. 1982. Nickel, copper, zinc and cadmium, 9: 323-336. In A. L. Page et al.(ed.)Methods of Soils Analysis. Part 2, 2nd edition. ASA-SSSA, Madison, WI. Bañuelos, G. S., and H. A. Ajwa. 1999. Trace elements in soils and plants: an overview. J. Environ. Sci. Health A. 34: 951-974. Bartlett, R. J., and J. M. Kimble. 1976. Behavior of chromium in soil:II. Hexavalent forms. J. Environ. Qual. 5: 383-386. Basta N. T., R. Gradwohl, K. L. Snethen, and J. L. Schroder. 2001. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J. Environ. Qual. 30: 1222-1230. Beckett, P.H.T. 1989. The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. Adv. Soil Sci. 9:143-176. Bennett, F. A., E. K. Tyler, R. R. Brooks, P. E. H. Gregg, and R. B. Stewart. 1998. Fertilizer of hyperaccumulators to enhance their potential for phytoremediation and phytomining. p. 249-259. In R. Brooks(ed.)Plants that hyperaccumulator heavy metals. CBA International, New York, NY. Blaylock, M. J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31: 860-865. Bray, R. H., and L. T. Kurtz. 1945. Determination of total, organic, and available forms of phosphorus in soil. Soil Sci.59: 39-45. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen-total. In A. L. Page et al(eds). Methods of soil analysis. Part 2, 2nd. ed.Agronomy p:595-624. Breteler H. 1973. A comparison between ammonium and nitrate nutrition of young sugar-beet plants grown in nutrient solutions at constant acidity. I. Production of dry matter, ionic balance and chemical composition. Neth. J. Agric. Sci. 21: 227-244. Brooks, R. R. 1998. Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, UK. Brown, K. R., C. A. Grant, and G. J. Racz. 1994. The effect of nitrogen source, rate, and placement on Cd bioavailability. Paper presented at the 37th annual Manitoba Society of Soil Science meeting. 4-5 January 1994, Winnipeg, MB. p. 167-175. BS EN 1122:2001. 2001. Plastics - Determination of cadmium - Wet decomposition method. NYSE: IHS. Calmano, W., U. Foerstner, and M. Kersten. 1986. Metal associations in anoxic sediments and changes following upland disposal. Toxicol. Environ. Chem. 12:313-321. Carilb, R. G., and L. J. Cajuste. 1992. Heavy metals in soils and alfalfa (Medicago sativa L.) irrigated with three sources of wastewater. J. Environ. Sci. Health. A. 27: 1771-1783. Chandler, K. and P. C. Brooks. 1991. Plant inputs of carbon to metal- contaminated soil and effects on the soil microbial biomass. Soil Biol. Biochem. 23: 1169-1177. Chaney, R. L., and P. M. Giordano. 1977. Microelements as related to plant deficiencies and toxicities. p. 235-279. In L. F. Elliott and F. J. Stevenson(eds.)Soils for management of organic wastes and waste waters. American Society of Agronomy Madison, Wisconsion. Chaney, R. L., M. Malik, Y. M. Li, S. L. Brown, E. P. Brewer, J. S. Angle, and A. J. M. Baker. 1997. Phytoremediation of soil metals. Environ. Biotechnol. 8: 279-284. Chen, Z. S., J. C. Lee, and J. C. Liu. 2000. The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils. Chemosphere. 41: 235-242. Christensen, T. H. 1984. Cadmium soil sorption at low concentrations: II Reversibility effect of changes in solute composition and effect of soil aging. Water, Air and Soil Pollution. 21: 114-125. CNS2770-5 N4024-5. 1982. Method of Test for Feeds : Determination of Crude Protein. Chinese National Standants, Bureau of Stands, Metrology and Inspection, Ministry of Economic Affairs, Taiwan. Comis, D. 1996. Green remediation: Using plants to clean the soil. Journal of Soil and Water Conservation May-June: 184-186. Cushman, J. H. 1982. Nutrient transport inside and outside the root rhizosphere:Theory. Soil Sci. Am. J. 46:704-709. Davies, B.E. 1980. Heavy metals in soils. p. 287-351. In B.J. Alloway (ed.) Lead. John Wiley & Sons, New York. Davies, B. E. 1990. Lead. p. 177-196. In B. J. Alloway(ed.)Heavy metals in soils. p. 5. John Wiley and Son, New York. Davies, B. E. 1992. Inter-relationship between soil properties and the uptake of cadmium, copper lead and zinc from contaminated soils by radish (Raphanus sativus L.). Wat. Air Soil Pollut. 63: 331-342. Deiana S., B. Manunza, A. Palma, A. Premoli, and C. Gessa. 2001. Interactions and mobilization of metal ions at the soil-root interface. p. 127-148. In Gobran, G. R., W. W. Wenzel, and E. Lombi(ed.)Trace elements in the rhizosphere. Boca Raton London, New York, Washington, D. C. Doll, E. C., and R. E. Lucas. 1973. Testing soil for potassium, calcium and magnesium. P.133-152. In L. M. Walsh and J. D. Beaton(ed.)Soil Testing and Plant Analysis. Soil Sci. Soc. Of Am., Madison, WI. Duffus, J.H. 2002. Heavy metals-a meaningless term ? Pure Appl. Chem. 74: 793-807. Available on the IUPAC website at : http://www.iupac. org/publications/pac/2002/7405/7405x0793.html. Dushenkov, V., P. B. A. N. Kumar, H. Motto, and I. Raskin. 1995. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 29: 1239-1245. Ebbs, S. D., M. M. Lasat, D. J. Brady, J. Cornish, R. Gordon, and L. V. Kochian. 1997. Phytoextraction of Cadmium and Zinc from a contaminated soil. J. Environ. Qual. 26: 1424-1430. Elliott, H.A., M.R. Liberti, and C.P. Huang. 1986. Competitive adsorption of heavy metals by soils. J. Environ. Qual. 15:214-219. Epstein, E., and R. L. Chaney. 1978. Land disposal of toxic substances and water-related problem. J. WPCF: 2037-2043. Eriksson, J. E. 1990. Factors influencing adsorption and plant uptake of cadmium from agricultural soils. Swedish University of Agricultural Sciences, Department of Soil Sciences, Reports and Dissertations 4. Uppsal, Sweden. Florjin, P. J., J. A. Nelemans, and M. L. van Beusichem. 1992. The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties. J. Plant Nutr. 15: 2405-2416. Fried, M. and R. E. Shapiro 1961. Soil-plant relationships in ion uptake. Annu. Rev. Plant Physiol. 12:91-112. Garbisu, C., and I. Alkorta. 2001. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores. Technol. 77: 229-236. Gál, J., Julita Markiewicz-Patkowska, Andrew Hursthouse and Paul Tatner. 2008. Metal uptake by woodlice in urban soils. Ecotoxicology and Environmental Safety 69:139-149. Gee, G. W., and J. W. Bauder. 1986. Particle size analysis. Part1, 2nd ed. Agronomy. 9: 383-409. Gijsman, A. J. 1990. Rhizosphere pH along different root zones of Douglas-fir(Pseudotsuga menziesii)as effected by sources of nitrogen, in Van Beusichem, M. L.,(ed.)Plant Nutrition-Physiology and application. Kluwer Academic Publisher, Dordrecht, 45-51. Gruebel, K.A., J.A. Davis, and J.O. Leckie. 1988. The feasibility of using sequential extraction techniques for arsenic and selenium in soil and sediments. Soil Sci. Soc. Am. J. 52:390-397. Grifferty, A., and S. Barrington. 2000. Zinc uptake by young wheat plants under two transpiration regions. J. Environ. Qual. 29 : 443-446. Hedley, M. J., P.H. Ney, and R. H. White. 1982. Plant induced changes in the rhizosphere of rape(Brassica napus. Var. Emerald)seedlings. I. pH changes and the increase P concentration in the soil solution. New Phytol. 91: 19-29. Hertz, J., C. Angehrn-Bettinazzi, and H. Stockli. 1990. Distribution of heavy metals in various litter horizons and forest soils. Int. J. Environ. Anal. Chem. 39:91-99. Hettiarachchi, G. M., G. M. Pierzynski, and M. D. Ransom. 2001. In situ stabilization of soil lead using phosphorus. J. Environ. Qual. 30: 1214-1221. Hinsinger, P., Gobran, G. R., Gregory, P. J., and Wenzel, W. W. 2005. Rhizosphere geometry and heterogendity arising from root-mediated physical and chemical processs. New Phytol. 168, 293-303. Hiltner, L. 1904. Arbeiten der Deutschen. Zandwirtsh. Ges. 98:59-78. Hovmand, M. F., J. C. Tjell, and H. Mosbaek. 1983. Plant uptake of airborne cadmium. Environ. Pollut. 30: 27-38. Iyengar, S.S., D.C. Martens, and W.P. Miller. 1981. Distribution and plant availability of soil zinc fractions. Soil Sci. Soc. Am. J. 45:735-739. Jones, D. L. and P. R. Darrah 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil. 166:247-257. Kabata-Pendias, A. and H. Pendia. 2001. Trace elements in soils and plants(3rd edition). CRC Press, Boca Raton, FL, USA. p. 73-98. Karczewska, A., L. Szerszen, and C. Kabala. 1998. Forms of selected heavy metals and their transformation in soils polluted by the emissions from copper smelters. Adv. GeoEcol. 31:705-712. Keller, C., and J.C. Vedy. 1994. Distribution of copper and cadmium fractions in two forest soils. J. Environ. Qual. 23:987-999. Khan, A. G., C. Kuek, T. M. Chaudhry, C. S. Khoo, and W. J. Hayes. 2000. Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere. 41: 197-207. Kloke, A., D. R. Sauerbeck, and H. Vetter. 1994. In Changing Metal Cycles and Human Health, Nriagu, J. ed, Springer-Veriag, Berlin 113. Kofoed, A. D. 1980. Copper and its utilization in Danish agriculture. Fertilizer Research. 1: 63-71. Kumar, P. B. A. N., V. Dushenkov, H. Motto, and I. Raskin. 1995. Phytoextraction: The use of plants to remove heavy metals from soils. Environ. Sci. Technol. 29: 1232-1238. Labauve, J. M., J. kotuby-Amacher, and R. P. Gambrell. 1988. The effect of soil properties and a synthetic municipial landfill leachate on the retention of Cd, Ni, Pb, and Zn in soil and sediment materials. J. WPCF. 60: 379-385. Larner, B. L., Anne S. Palmer, Andrew J. Seen and Ashley T. Townsend. 2008.A comparison of an optimised sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning.analytica chimica acta 608:147-157. Lasat, M. M. 2002. Phytoextraction: A review of biological mechanisms. J. Environ. Qual. 31: 109-120. Lindsay, W. L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York. Lipton, D. S., R. W. Blanchar and Dale G. Blevins 1987. Citrate, malate and succinate conaentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol. 85:315-317. Lo, I.M.-C., and X.-Y. Yang. 1998. Removal and redistribution of metals from contaminated soils by a sequential extraction method. Waste Manage. 18:1-7. Lombi, E., W. W. Wenzel, and D. C. Adriano. 1998. Soil contamination, risk reduction and remediation. Land Contam. Reclam. 6: 183-197. Lombi, E., F. J. Zhao, S. J. Dunham, and S. P. McGrath. 2001. Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction. J. Environ. Qual. 30: 1919-1926. Lorenz, S. E., R. E. Hamon, S. P. McGrath, P. E. Holm, and T. H. Christensen. 1994. Application of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Eur. J. Soil Sci. 45: 159-165. Luoma, S. N., and E. A. Jenne. 1976. Estimating bio-availability of sediment-bound trace metals with chemical extractants. Trace Subst. Environ. Health 10: 343-351. Lynch, J. M., and J. M. Whipps 1990. Substrate flow in the rhizosphere. Plant Soil 129:1-10. Ma, L.Q., and G.N. Rao. 1997. Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. J. Environ. Qual. 26:259-264. Marschner, H., 1986. Mineral Nutrition of Higher Plants. Academic Press, London. Mattigod, S. V., and G. Sposito. 1979. In chemical modeling in aqueos systems. p. 837-856. ed. A. Am. Chem. Soc., Washington D. C. McBride, M. B. 1994. Environmental chemistry of soils. Oxford University Press, New York. McGrath, S. P. 1998. Phytoextraction for soil remediation. In: Brooks, R. R.(Ed.). Plant that Hyperaccumulate Heavy Metals. Their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Wallingford, UK. p. 261-287 McGrath, S. P., F. J. Zhao, and E. Lombi. 2002. Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy. McLean, E. O. 1982. Soil pH and lime requirement. 12 :199-223. In A. L. Page et al.(ed.)Methods of soil analysis. Part 2, 2nd. ed.ASA-SSSA, Madison, Wisconsin, USA. Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Current Opinion in Plant Biotechnology. 3: 153-162. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Comm. Soil Sci. Plant An. 15: 1409-1416. Mench, M., and E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L. and Nicotiana rustica L. Plant Soil 132 : 187-196. Mench, M. J., and S. Fargues. 1994. Metal uptake by iron-efficient and inefficient oats. Plant Soil 165 : 227-233. Mench, M. J., V. L. Didier, M. Loffler, A. Gomez, and P. Masson. 1994. A mimicked in-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J. Environ. Qual. 23: 58-63. Meharg, A. A. 1994. Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentrations in the environment. Plant Cell Environ. 17: 989-993. Merry, R. H. and Tiller, K. G.: 1986b, Plant and Soil. 95, 255. Miller, W.P., D.C. Martens, and L.W. Zelazny. 1986. Effect of sequence in extraction of trace metals from soils. Soil Sci. Soc. Am. J. 50:598-601. Mitchell, L. G., C. A. Grant, and G. J. Racz. 2000. Effect of nitrogen application on concentration of cadmium and nutrient ions in soil solution and in durum wheat. Can. J. Soil Sci. 80: 107-115. Mullins, G. L., L. E. Sommers, and S. A. Barber. 1986. Modeling the plant uptake of cadmium and zinc from soils treated with sewage sludge . Soil Sci. Soc. Am. J. 50: 1245-1250. Naidu, R., S. Rogers, V. V. S. R. Gupta, R. S. kookana, N. S. Bolan, and D. Adriano. 1997. Bioavailability of metals in the soil-plant environment and its potential role in the risk assessment : an overview. P. 757-758. In I. K. Iskander, S. E. Hardy, A. C. Chang, and G. M. Pierzynski(ed.). Proceedings of extended abstracts from the fourth internation conference on the biogeochemistry of trace elements. June 23-26, 1997. Clark Kerr Camps, Berkeley. Narwal, R.P., B.R. Singh, and B. Salbu. 1999. Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil. Sci. Plant Anal. 30:1209-1230. Nelson,D.W.and L.E.Sommer.1982.Total carbon,organic carbon,and organic matter.In Page et al.,(eds)"Methods of Soil Analysis",Part 2(2nd ed.) 383-411. Nye, P. H. 1981. pH changes across the rhizosphere induced by roots. Plant Soil. 61: 7-26. Nye, P. H. and P. B. Tinker 1997. Solute Movements in the Root-Soil System. Blackwell, Oxford. Obrador, A., M.I. Rico, J.I. Mingot, and J.M. Alvarez. 1997. Metal mobility and potential bioavailability in organic matter-rich soil-sludge mixtures: effect of soil type and contact time. Sci. Total Environ. 206:117-126. Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A. (1954): Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S Department of Agriculture Circular 939, 19. Page, M. M., and C. L. Page. 2002. Electroremediation of contaminated soils. J. Environ. Engineering. 128(3): 208-219. Patricia, S., Griselda Polla, DaríoGómez, Antonio José Fernández Espinosa and Ana Calleja López. 2008.A three-step metal fractionation scheme for fly ashes collected in an Argentine thermal power plant. Fuel 87:1249-1258. Peterson, W. and M. Bottger 1991. Contribute of organic acids to the acidification of the rhizosphere of maize seedling. Plant and Soil 32:159-163. Phipps, D. A. 1981. Chemistry and biochemistry of trace metals in biological systems. P. 1-54. In N. W. Lepp(ed.)Effect of trace metals on plant function. Applied Science Publishers, London. Prudent, P., M. Domeizel, and C. Massiani. 1996. Chemical sequential extraction as decision-making tool: application to municipal solid waste and its individual constituents. Sci. Total Environ. 178:55-61. Quevauviller, P., A. Ure, H. Muntau, and B. Griepink, 1993. Improvement of analytical measurements within the BCR program: single and sequential extraction procedures applied to soil and sediment analysis. Int. J. Environ. Anal. Chem. 51:129-134. Ramos, L., L.M. Hernandez, and M.J. Gonzalez. 1994. Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Donana National Park. J. Environ. Qual. 23:50-57. Rhoades, J. D. 1982. Soluble salts. P. 167-180. In A. L. Page et al.(ed.)Methods of soil Analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI. Rogers, J. E. 1998. Soil bioremediation: review of land treatment and composting options. Land Contamin. Reclam. 6:215-222. Rovira, A. D., and C. B. Davey 1971. Biology of rhizophere. In:E. W. Carson(ed.),The Plant Root and its Environment, pp. 158-213. University Press of Virginia, Charlottesville. Rygiewicz, P. T., C. S. Bledsoe, and R. J. Zasoski. 1984. Effects of ectomycorrhizae and solution pH on [15N] nitrate uptake by coniferous seedling. Can J. For. Res. 14: 884-892. Sakar., A. N., D. A. Jenkins and R. G. W. Jones 1979. Modifications to mechanical and mineralogical composition of soil within the rhizosphere. The Soil-Root Interface 2:125-136. Salomons, W., and U. Foerstner. 1984. Metals in the Hydrocycle. Springer-Verlag, Berlin Salt, D. E., M. J. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13: 468-474. Salt, D. E., R. D. Smith, and I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643-668. Scheffer, K., W. Stach, and F. Vardakis. Über die Verteilung der Schwermatallen Eisen. Mangan, Kupfer and Zink in Sommergesternpflanzen, Landwirtsch. Forsch., 1, 156, 1978; 2, 326, 1979. Shuman, L.M. 1985. Fractionation method for soil microelements. Soil Sci. 140:11-22. Shuman, L.M. 1979. Zn, Mn and Cu in soil fractions. Soil Sci. 127: 10-17. Shuman L.M., and J. Wang. 1997. Effect of rice variety on zinc, cadmium, iron, and manganese content in rhizosphere and non-rhizosphere soil fractions. Commun. Soil Sci. Plant Anal. 28: 37-47. Smiley R. W. 1974. Rhizosphere pH as influenced by plants, soils, and nitrogen fertilizers. Soil Sci. Soc. Am. Proc. 38: 795-799. Soon, Y.K., and T.E. Bates. 1982. Chemical pools of cadmium, nickel and zinc in polluted soils and some preliminary indications of their availability to plants. Soil Sci. 33:477-488. Stanton, N. L., 1988. The underground in grasslands. Ann. Rev. Syst. Ecol. 19:573-589. Sulkowski, M., and A.V. Hirner. 2006. Element fractionation by sequential extraction in a soil with high carbonate content. App. Geochem. 21:16-28. Szmigielska, A. M., K. C. J. Van Rees, G. Cieslinski and P. M. Huang and D. R. Knott. 1995 Determination of low molecular weight dicarboxylic acids in root exudates by gas chromatography. J. Agric. Food Chem. 43:956-959. Terry, M., and G. M. Lewis. 1997. The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites in Canada: A decision paper. Journal of Soil Contamination. 6 : 227-241. Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procdure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. Tichý, R., J. Fajtl, S. Kužel, and L. Kolář. 1997. Use of elemental sulphur to enhance a cadmium solubilization and its vegetative removal from contaminated soil. Nutrient Cycling in Agroecosystems. 46: 249-255. Tiffin, L. O. 1972. Translocation of micronutrients in plants, in Micronutrients in Agriculture, Mortvedt, J. J., Giordano, P. M., and Lindsay, W. L.,(Eds.), Soil Science Society of America, Madison, WI, 199. Tiller, K. G. 1989. Heavy metals in soils and their environmental significance. Adv. Soil Sci. 9: 113-142. Tisdale, S. L., W. L. Nelson, J. D. Beaton, and J. L. Havlin.(eds.)1993. Soil fertility and fertilizers. Macmillan Publishing Company, New York, NY. Ton, S., J.J. Delfino, and H.T. Odum. 1993. Wetland retention of lead from a hazardous site. Bull. Environ. Contam. Toxicol. 51:430-437. Ullrich, W. R. 1992. Transport of nitrate and ammonium through plant membranes. In: Nitrogen metabolism in Plants, edited by Mengel, K. and Pilbeam, D. J. oxford University Press, Oxford p. 121-137. Uren, N. 1993. Mucilage secretin and its interaction with soil, and contact reduction. Plant Soil. 155/156: 79-82. Van Goor, B. J., and D. Wiersma. 1976. Chemical form of manganese and zinc in phloem exudates. Physiol. Plant. 36, 213. Vancura, V. and F. Kunc 1988. Soil Microbial Associations. Elsver, Amsterdam. Welch, R. M. 1995. Micronutrient nutrition of plants. Critical Reviews in Plant Sciences. 14: 49-82. Wenzel, W. W., D. C. Adriano, D. Salt, and R. Smith. 1999. Phytoremediation: A plant-microbe-based remediation system. p. 457-508. In D. C. Adriano, J. –M. Bollag, W. T. Frankenberger Jr., and R. C. Sims(eds.)Bioremediation of contaminated soils. American Society of Agronomy, Inc., Madision, Wisconsin, USA. Whiting, S. N., J. R. Leake, A. J. M. Baker, and S. P. McGrath. 1997. Changes in the phytoavailability of zinc to plants sharing a rhizosphere with the zinc hyperaccumulator Thlaspi caerulescens J. and C. Presi, in Iskandar, I. K., Hardy, S. E., Chang, A. C., and Pierzynski, G. M., eds., Proceedings of the Fourth International Conference on the Biogeochemistry of Trace Elements, June 23-26, Clark Kerr Campus, Berkeley, CA, 469. Willaert, G., and M. Verloo. 1992. Effects of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in cadmium contaminated soil. Pedologie. 43: 83-91. Yang, J., D. E. Mosby, S. W. Casteel, and R. W. Blanchar. 2001. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil. Environ. Sci. Technol. 35: 3553-3559. Yang, X., V. C. Baligar, D. C. Martens, and R. B. Clark. 1996. Plant tolerance to nickel toxicity: I. Influx, transport, and accumulation of nickel in four species. Journal of Plant Nutrition. 19: 73-85. Yuan,C. and T.S. Chiang. 2008. Enhancement of electrokinetic remediation of arsenic spiked soil by chemical reagents.Journal of Hazardous Materials 152:309-315. Zhang, F. S., M. Treeby, V. Romheld, and H. Marschner. 1991. Mobilization of iron by phytosiderophores as affected by other micronutrients. Plant Soil. 130: 173-178.
摘要: 
台灣地區土壤污染事件時有所聞,農地重金屬污染範圍與程度已威脅到民眾健康。重金屬污染土壤復育中客土稀釋重金屬濃度後,因植物生長情況良好而造成植體吸收重金屬總量增加,所以潛在危機是生長於稀釋後重金屬污染土的作物生長良好而沒有出現毒害症狀時,食用此作物導致重金屬經食物鏈直接或間接進入到動物或人體內,長期累積而危害健康。本試驗在七種不同濃度的重金屬污染土(A3、A5、A、B1、B2、B3、CK)中種植野莧,根據野莧植株生長情況與植體吸收濃度及根圈與總體土壤元素型態的分佈與差異,探討重金屬污染土壤客土稀釋整治對野莧生長影響。各處理野莧重金屬濃度A皆為最高,CK皆為最低,試驗一A植體生質量顯著比A5低致使A植體自土壤中移除重金屬的量低於A5,故土壤稀釋後,野莧生長良好情況下,隨著土壤中重金屬濃度有提高植物吸收重金屬的量之趨勢,這也意謂著客土稀釋必需考慮整治後的濃度所導致植體對重金屬的累積吸收量增加。在種植野莧後的土壤中,根圈土之pH值除試驗一A土壤外,皆比總體土壤高。土壤型態一交換態及碳酸鹽態所佔比例,鋁比例含量極少,鉀與鐵差異為根圈土濃度比總體土濃度低,鎂、鉛與鋅差異不顯著,其他元素差異為根圈濃度比總體濃度高,在試驗二的趨勢多為不顯著。

Taiwan heard of contaminated soil, heavy metal contamination of agricultural land has been the scope and extent of a threat to public health. Remediation of heavy metal contamination of soil heavy metal concentration in soil after dilution, as a result of plants that grow well on the heavy metal implant to increase the total absorption, so the potential risk of heavy metal pollution is a good crop and no poisoning symptoms, consumption of the crop led to heavy metals entered the food chain through animal or human body, the cumulative long-term health risks. In this study, in seven different concentrations of heavy metals in contaminated soil (A3, A5, A, B1, B2, B3, CK) in the cultivation of Amaranthus viridis L., Amaranthus viridis L. plants in accordance with the explant growth and soil to absorb the concentration of rhizosphere soil and bulk soil the earth element distribution patterns and differences to explore the heavy-metal contamination of soil remediation soil diluted the impact on the growth of Amaranthus viridis L.. The deal with Amaranthus viridis L. A are the highest concentrations of heavy metals, CK are the lowest. A in experiment 1 the quality of explants of Health resulted in significantly lower than the A5 explants A to remove heavy metals from the soil is less than the A5. On diluted soil, Amaranthus viridis L. grow well under the circumstances, with the concentration of heavy metals in soil to increase the amount of plants to absorb heavy metals trend. This also means that soil remediation to take into account the dilution of the concentration after the implant caused by the accumulation of heavy metals increased absorption. Wild Amaranthus in planting after the soil rhizosphere soil pH, addition of soil test A, the soils are higher than Bulk soils. Type of soil exchangeable and carbonate-state a share of the proportion of content is extremely low aluminum, potassium and iron concentration difference of soil rhizosphere soil than Bulk soil concentration is low, magnesium, lead and zinc was not significantly different, other elements of difference in the concentration of rhizosphere soil than Bulk soil high concentrations, the trend of test2 mostly not significant.
URI: http://hdl.handle.net/11455/28203
其他識別: U0005-2608200907452900
Appears in Collections:土壤環境科學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.