Please use this identifier to cite or link to this item:
標題: 利用Polyoxometalate催化零價鋁還原六價鉻
Application of polyoxometalate as a catalyst for Cr(VI) reduction by zero-valent aluminum.
作者: 林潔如
Lin, Chieh-Ju
關鍵字: Cr(VI);六價鉻;Zero-valent aluminum;Polyoxometalate;零價鋁;Polyoxometalate
出版社: 土壤環境科學系所
引用: 行政院環境保護署。2001。土壤污染管制標準。環署水字第○○七三六八四號。 行政院環境保護署。2001。地下水污染管制標準。環署水字第○○七三六八○號。 Amdur, M.O., J. Doull, and C.D. Klaassen. 1993. Casarett and Doull''s Toxicology. McGraw Hill, New York. Anderson, L.D., D.B. Kent, and J.A. Davis. 1994. Batch experiments characterizing the reduction of Cr(VI) using suboxic material from a mildly reducing sand and gravel aquifer. Environ. Sci. Technol. 28:178-185. Antonaraki, S., E. Androulaki, D. Dimotikali, A. Hiskia, and E. Papaconstantinou. 2002. Photolytic degradation of all chlorophenols with polyoxometalates and H2O2. J. Photochem. Photobiol. A: Chem. 148:191-197. Apte, A.D., S. Verma, V. Tare, and P. Bose. 2005. Oxidation of Cr(III) in tanery sludge to Cr(VI): Field observation and theoretical assessment. J. Hazard. Mat. B 121:215-222. Apte, A.D., V. Tare, and P. Bose. 2006. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. J. Hazard. Mat. B 128:164-174. Bader, H., V. Snrzenegger, and J. Hoigne. 1988. Photometric method for the determination of low concentration of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine(DPD). Wat. Res. 22:1109-1115. Bartlett, R.J., and J.M. Kimble. 1976. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual. 5:383-386. Bartlett, R.J., and B.R. James. 1979. Behavior of chromium in soils: III. Oxidation. J. Environ. Qual. 8:31-35. Bishop, C., and M. Surgenor. 1964. The red blood cell: a comprehensive treatise. Academic Press, New York. Bregeault, J.M. 1992. Catalyse Homoge`ne par les Complexes des Me´taux de Transition. Masson, Paris. Buerge, I.J., and S.J. Hug. 1997. Kinetics and pH Dependence of Chromium(VI) Reduction by Iron(II). Environ. Sci. Technol. 31:1426-1432. Chanon, M., M. Julliard, J. Santamaria, and F. Chanon. 1992. Role of single electron transfer in dioxygen activation. Swing activation in photochemistry, electrochemistry, thermal chemistry. New J. Chem. 16:171-201. Cotton, F.A., and G. Wilkinson. 1980. Advanced organic chemistry: a comprehensive text, 4th ed. John Wiley and Sons, New York. Curci, R., and E.O. Edwards. 1992. Catalytic Oxidations with Hydrogen Peroxide as Oxidant. Kluwer, Dordrecht. Debetto, P., and S. Luciani. 1988. Toxic effect of chromium on cellular metabolism. Sci. Tot. Environ. 71:365-377. DeFlora, S., G.S. Badolati, and D. Serra. 1987. Circadian reduction of chromium in the gastric environment. Mutat. Res. 192:169-174. Eary, L.E., and D. Rai. 1987. Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environ. Sci. Technol. 21:1187-1193. Eary, L.E., and D. Rai. 1988. Chromium removal from aqueous wastes by reduction with ferrous iron. Environ. Sci. Technol. 22:972-977. Eary, L.E., and D. Rai. 1989. Kinetics of chromate reduction by ferrous ions derived from hematite and biotite at 25 ℃. Am. J. Sci. 289:180-213. Eary, L.E., and D. Rai. 1991. Chromate reduction by subsurface soils under acidic conditions. Soil Sci. Soc. Am. J. 55:676-683. Environmental Protection Agency, U.S. (USEPA). 1998. Toxicological review of hexavalent chromium. EPA-513-569-7254. Environmental Protection Agency, U.S. (USEPA). 2007. 2005 urban air toxics monitoring program (UATMP) - hexavalent chromium. EPA-454/R-07-005. Fendorf, S.E., and R.J. Zasoski. 1992a. Chromium(III) oxidation by MnO2. I: Characterization. Environ. Sci. Technol. 26:79-85. Fendorf, S.E., M. Fendorf, D.L. Sparks, and R. Gronsky. 1992b. Inhibition mechanisms of Cr(III) oxidation by manganese oxides. J. Colloid Interface Sci. 148:37-54. Fendorf, S.E. 1995. Surface reactions of chromium in soils and waters. Geoderma 67:55-71. Feng, W., T.R. Zhang, Y. Liu, R. Lu, and Y.Y. Zhao. 2003. Photochromic behavior of nanocomposite hybrid films of finely dispersed phosphotungstic acid particles into polyacrylamide. J. Mat. Sci. 38:1045-1048. Fishbein, L. 1981. Sources, transport and alterations of metal compounds: an overview. I. Arsenic, beryllium, cadmium, chromium, and nickel. Environ. Health Perspect. 40:43-64. Galan, B., D. Castaneda, and I. Ortiz. 2005. Removal and recovery of Cr(VI) from polluted ground waters: A comparative study of ion-exchange technologies. Wat. Res. 39:4317-4324. Gkika, E., A. Troupis, A. Hiskia, and E. Papaconstantinou. 2005. Photocatalytic Reduction and Recovery of Mercury byPolyoxometalates. Environ. Sci. Technol. 39:4242-4248. Gkika, E., A. Troupis, A. Hiskia, and E. Papaconstantinou. 2006. Photocatalytic reduction of chromium and oxidation of organics by polyoxometalates. Appl. Catal. B: Environ. 62:28-34. Gray, S.J., and K. Sterling. 1950. The tagging of red cells and plasma proteins with radioactive chromium. J. Clin. Invest. 29:1604-1613. Hill, C.L., and C.M. Prosser-McCartha. 1995. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev. 143:407-455. Hiskia, A., and E. Papaconstantinou. 1991. Dioxygen activation and homogeneous catalytic oxidation. Elsevier Science Publishers, Amsterdam. Hiskia, A., and E. Papaconstantinou. 1992. Photocatalytic oxidation of organic compounds by polyoxometalates of molybdenum and tungsten. Inorg. Chem. 31:163-167. Hiskia, A., A. Mylonas, and E. Papaconstantinou. 2001. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 30:62-69. Hiskia, A., A. Troupis, S. Antonaraki, E. Gkika, P. Kormali, and E. Papaconstantinou. 2006. Polyoxometallate photocatalysis for decontaminating the aquatic environment from organic and inorganic pollutants. Intern. J. Environ. Anal. Chem. 86:233-242. Hossain, M.A., M. Alam, and D.R. Yonge. 2005. Estimating the dual-enzyme kinetic parameters for Cr(Ⅵ) reduction by Shewanella oneidensis MR-1 from soil column experiments. Wat. Res. 39:3342-3348. Hu, J., G. Chen, and I.M.C. Lo. 2005. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Wat. Res. 39:4528-4536. Hug, S.J., H.U. Laubscher, and B. James. 1996. Iron(III) catalyzed photochemical reduction of chromium(VI) by oxalate and citrate in aqueous solutions. Environ. Sci. Technol. 31:160-170. Ishibashi, Y., C. Cervantes, and S. Silver. 1990. Chromium reduction in Pseudomonas putida. Appl. Environ. Microbial. 56:2268-2270. Izumi, Y., K. Urabe, and M. Onaka. 1992. Zeolite, Clay and Heteropoly Acid in Organic Reactions. Kodansha/VCH, Tokyo. James, B.R., and R.J. Bartlett. 1983a. Behavior of chromium in soils. VI. Interactions between oxidation-reduction and organic complexation. J. Environ. Qual. 12:173-176. James, B.R., and R.J. Bartlett. 1983b. Behavior of chromium in soils. VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual. 12:177-181. Jansen, R.J.J., H.M. van Veldhuizen, M.A. Schwegler, and H. van Bekkum. 1994. Recent (1987-1993) developments in heteropolyacid catalysts in acid catalyzed reactions and oxidation catalysis. Recl. Trav. Chim. Pays-Bas 113:115-135. Jeannin, Y., and M. Fournier. 1987. Nomenclature of polyanions. P. Appl. Chem. 59:1529-1548. Jeannin, Y.P. 1998. The Nomenclature of Polyoxometalates: How To Connect a Name and a Structure. Chem. Rev. 98:51-76. Johnson, C.A., and A.G. Xyla. 1991. The oxidation of chromium(III) to chromium(VI) on the surface of manganate. Geochim. Cosmochim. Acta 55:2861-2866. Jones, D.L., and P.R. Darrah. 1994. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166:247-257. Jurgensen, A., and J.B. Moffat. 1995. The stability of 12-molybdosilicic, 12-tungstosilicic, 12-molybdophosphoric and 12-tungstophosphoric acids in aqueous solution at various pH. Catal. Lett. 34:237-244. Katz, S.A., and H. Salem. 1993. The toxicology of chromium with respect to its chemical speciation: a review. J. Appl. Toxicol. 13:217-224. Kim, S., H. Park, and W. Choi. 2004. Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O403- vs TiO2. J. Phys. Chem. B 108:6402-6411. Kozhevnikova, I.V., and K.I. Matveeva. 1983. Homogeneous catalysts based on heteropoly acids. Appl. Catal. 5:135-150. Kozhevnikov, I.V. 1987. Advances in catalysis by heteropolyacids. Russ. Chem. Rev. 56:811-825. Kozhevnikov, I.V. 1993. Fine organic synthesis with the aid of heteropoly compounds. Russ. Chem. Rev. 62:473-491. Kozhevnikov, I.V. 1994. Heteropoly acids as catalysts for organic reactions. Stud. Surf. Sci. Catal. 90:21-34. Kozhevnikov, I.V. 1995. Heteropoly Acids and Related Compounds as Catalysts for Fine hemical Synthesis. Catal. Rev. Sci. Eng. 37:311-352. Kozhevnikov, I.V., G.P. Mulder, M.C. Steverink-de Zoete, and M.G. Oostwal. 1998. Epoxidation of oleic acid catalyzed by peroxo phosphotungstate in a two-phase system. J. Mol. Catal. A 134:223-228. Lee, J., J. Kim, and W. Choi. 2007. Oxidation on Zerovalent Iron Promoted by Polyoxometalate as an Electron Shuttle. Environ. Sci. Technol. 42:3335-3340. Lee, C., C.R. Keenan, and D.L. Sedlak. 2008. Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent Iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 42:4921-4926. Lei, P., C. Chen, J. Yang, W. Ma, J. Zhao, and L. Zang. 2005. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environ. Sci. Technol. 39:8466-8474. Lim, T.H., T.I. Sargent, and N. Kusubov. 1983. Kinetics of trace element chromium (III) in the human body. Am. J. Physiol. 244:445-454. Lu, A., S. Zhong, J. Chen, J. Shi, J. Tang, and A. Lu. 2006. Removal of Cr(VI) and Cr(III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environ. Sci. Technol. 40:3064-3069. Masscheleyn, P.H., J.H. Pardue, R.D. DeLaune, and W.H. Patrick. 1992. Chromium redox chemistry in a lower Mississippi valley bottomland hardwood wetland. Environ. Sci. Technol. 26:1217-1226. Mayes, M.A., P.M. Jardine, I.L. Larsen, S.C. Brooks, and S.E. Fendorf. 2000. Multispecies transport of metal-EDTA complexes and chromate through undisturbed columns of weathered fractured saprolite. J. Contam. Hydro. 45:243-265. Mertz, W. 1969. Chromium occurrence and function in biological systems. Physiol. Rev. 49:163-239. Misono, M., N. Mizuno, K. Katamura, A. Kasai, Y. Konishi, K. Sakata, T. Okuhara, and Y. Yoneda. 1982. The structure and properties of 12-heteropolyacids of molybdenum and tungsten (H3PMo12-xWxO40) and their salts pertinent to heterogeneous catalysis. Bull. Chem. Soc. Jpn. 55:400-406. Misono, M. 1987. Heterogeneous catalysis by heteropoly compounds of molybdenum and tungsten. Catal. Rev. 29:269-321. Nakajima, A., and Y. Baba. 2004. Mechanism of hexavalent chromium adsorption by persimmom tannin gel. Wat. Res. 38:2859-2864. Nakayama, E., T. Kuwamoto, S. Tsurubo, H. Tokoro, and T. Fujinaga. 1981a. Effect of naturally occurring organic materials on the complex formation of chromium(III). Anal. Chim. Acta. 130:289-294. Nakayama, E., T. Kuwamoto, S. Tsurubo, and T. Fujinaga. 1981b. Effects of manganese oxides on reducible organic materials on the redox processes of chromium. Anal. Chim. Acta. 130:401-404. O''Flaherty, E.J. 1996. A physiologically-based model of chromium kinetics in the rat. Toxicol. Appl. Pharmacol. 138:54-64. Okuhara, T., N. Mizuno, and M. Misono. 1996. Catalytic chemistry of heteropoly compounds. Adv. Catal. 41:113-252. Ono, Y. 1992. In Perspectives in Catalysis. Blackwell, London. Park, D., Y.S. Yun, and J.M. Park. 2005. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60:1356-1364. Patterson, R.R., S.E. Fendorf, and M. Fendorf. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environ. Sci. Technol. 31:2039-2044. Petrilli, F., and S. DeFlora. 1978. Oxidation of inactive trivalent chromium to the mutagenic hexavalent form. Mutat. Res. 58:167-178. Pettine, M., L. Campanella, and F.J. Millero. 2002. Reduction of hexavalent chromium by H2O2 in acidic solutions. Environ. Sci. Technol. 36:901-907. Pope, M.T., and J.G.M. Varga. 1966. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg. Chem. 5:1249-1254. Pope, M.T. 1983. Heteropoly and isopoly oxometalates Springer, Berlin. Prados, R.A., and M.T. Pope. 1976. Low-temperature electron spin resonance spectra of heteropoly blues derived from some 1:12 and 2:18 molybdates and tungstates. Inorg. Chem. 15:2547-2553. Rai, D., B.M. Sass, and D.A. Moore. 1987. Chromium(III) hydrolysis constants and solubility of chromium(III) hydroxide. Inorganic Chemistry 26:345-349. Rai, D., L.E. Eary, and J.M. Zachara. 1989. Environmental chemistry of chromium. Sci. Tot. Environ. 86:15-23. Richard, F.C., and A.C.M. Bourg. 1991. Aqueous geochemistry of chromium: A review. Wat. Res. 25:807-816. Saleh, F.Y., T.F. Parkerton, R.V. Lewis, J.H. Huang, and K.L. Dickson. 1989. Kinetics of chromium transformations in the environment. Sci. Total Environ. 86:25-41. Sass, B.M., and D. Rai. 1987. Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg. Chem. 26:2228-2232. Schindler, P.W., and W. Stumm. 1987. The surface chemistry of oxides, hydroxides and oxide minerals. Wiley, New York. Sedlak, D.L., and P.G. Chan. 1997. Reduction of hexavalent chromium by ferrous iron. Geochim. Cosmochim. Acta 61:2185-2192. Sloboda-Rozner, D., P. Witte, P.L. Alsters, and R. Neumanna. 2004. Aqueous Biphasic Oxidation: A Water-Soluble Polyoxometalate Catalyst for Selective Oxidation of Various Functional Groups with Hydrogen Peroxide. Adv. Synth. Catal. 346:339-345. Souchay, P. 1969. Ions Mineraux Condenses. Masson, Paris. Suzuki, Y., and K. Fukuda. 1990. Reduction of hexavalent chromium by ascorbic acid and glutathione with special reference to the rat lung. Arch. Toxicol. 64:169-176. Stepniewska, Z., K. Bucior, and R.P. Bennicelli. 2004. The effect of MnO2 on sorption and oxidation of Cr(III) by soils. Geoderma 122:291-296. Stumm, W., and J.J. Morgan. 1981. Aquatic Chemistry. Wiley, New York. Troupis, A., A. Hiskia, and E. Papaconstantinou. 2001. Reduction and recovery of metals from aqueous solutions with polyoxometallates. New J. Chem. 25:361-363. Troupis, A., A. Hiskia, and E. Papaconstantinou. 2002. Photocatalytic reduction and recovery of copper by polyoxometalates. Environ. Sci. Technol. 36:5355-5362. Troupis, A., A. Hiskia, and E. Papaconstantinou. 2003. Photocatalytic reduction—recovery of silver using polyoxometalates. Appl. Catal. B: Environ. 42:305-315. Troupis, A., A. Hiskia, and E. Papaconstantinou. 2004. Selective photocatalytic reduction-recovergy of palladium using polyoxometallates. Appl. Catal. B: Environ. 52:41-48. Tsigdinos, G.A. 1978. Heteropoly compounds of molybdenum and tungsten. Top. Curr. Chem. 76:1-64. Turner, M.A., and R.H. Rust. 1971. Effects of chromium on growth and mineral nutrition of soybeans. Soil Sci. Soc. Am. Proc. 35:755-758. Weber, H. 1983. Long-term study of the distribution of soluble chromate-51 in the rat after a single intratracheal administration. J. Toxicol. Environ. Health 11:749-764. Weinstock, I.A. 1998. Homogeneous-phase electron-transfer reactions of polyoxometalates. Chem. Rev. 98:113-170. Wiegand, H.J., H. Ottenwalder, and H.M. Bolt. 1985. Fast uptake kinetics in vitro of 51Cr(VI) by red blood cells of man and rat. Arch. Toxicol. 57:31-34. Williams, A.G.B., and M.M. Scherer. 2001. Kinetics of Cr(VI) reduction by carbonate green rust. Environ. Sci. Technol. 35:3488-3494. Witmer, C.M., and R. Harris. 1991. Chromium content of bone after oral and intraperitoneal (IP) administration of chromium (VI) to rats. Toxicol. 11:41. Wittbrodt, P.R., and C.D. Palmer. 1995. Reduction of Cr(VI) in the presence of excess soil fulvic-acid. Environ. Sci. Technol. 29:255-263. Xu, F.C., H.R. Krouse, and T.W. Swaddle. 1985. Conjugate base pathway for water exchange on aqueous chromium(III): variable-pressure and -temperature kinetic study. Inorg. Chem. 24:267-270. Yang, J.K., and S.M. Lee. 2006. Removal of Cr(Ⅵ) and humic acid by using TiO2 photocatalysis. Chemosphere 63:1677-1684. Zhang, H., and R.J. Bartlett. 1999. Light-induced oxidation of aqueous chromium(III) in the presence of Iron(III). Environ. Sci. Technol. 33:588-594. Zhang, G., and Y. Xu. 2005. Polyoxometalate-mediated reduction of dichromate under UV irradiation. Inorg. Chem. Commun. 8:520-523. Zhu, Z., R. Tain, and C. Rhodes. 2003. A study of the decomposition behaviour of 12-tungstophosphate heteropolyacid in solution. Can. J. Chem. 81:1044-1050.

Polyoxometalates (POMs) is an anionic cluster and an efficient catalyst. Upon UV light absorption, POMs could induce the degradation of organic contaminants accompanied with the reduction of toxic metals. In the absence of light, POMs could be reduced by zero-valent iron (ZVI), and this reduced form of POM would react further with dissolved O2, forming H2O2 followed by the production of OH radical through a Fenton-type reaction. That is, POM would lead to an oxidizing environment in the absence of light with ZVI. Nonetheless, we speculate that the pathway of OH radical production would be inhibited in the presence of Cr(VI) because Cr(VI) scavenges rapidly reduced POM and H2O2. Therefore, the objective of the present study is to evaluate Cr(VI) reduction on zerovalent Al (ZVAl) as catalyzed by HNa2PW12O40 in an acidic solution, i.e., pH 1.0, under O2, N2 or Ar atmosphere. The ZVAl reductant instead of ZVI was used due to the effect of Fe ions on colorimetric measurement of Cr(VI).In addition, the recycle and reuse of POM is also investigated.
The results show that ZVAl would donate electrons to POM, forming blue-colored reduced POM(e-), such as [PW12O40]4-, [PW12O40]5-, and [HPW12O40]6-, under N2 or Ar atmosphere in the dark. These reduced POM could convert extremely rapid Cr(VI) to Cr(III) upon their formations. Stoichiometric calculation found that one-electron reduction of [PW12O40]4- was responsible for Cr(VI) reduction in the beginning of reaction; however, three-electron reduction of [HPW12O40]6- dominated Cr(VI) reduction afterward. In the presence of O2, reduced POM would be oxidized, leading to the production of H2O2, which could reduce Cr(VI) in an acid solution. Following Cr(VI) reduction, the solution containing Cr(III), Al(III), and POM was then adjusted to pH 6.0 to precipitate of Cr(III) and Al(III). In the meantime, POM was decomposed to low molecular weight anionic cluster such as [PW11O39]7-. These decomposed POM species would convert back to the form of [PW12O40]3- while acidifying the solution to pH 1.0. However, a portion of POM would still present as the species of [PW11O39]7-, which may result in a lower reductive efficiency of POM.
其他識別: U0005-2906200919115800
Appears in Collections:土壤環境科學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.