Please use this identifier to cite or link to this item:
標題: 探討碳含量及鍛燒溫度對於碳摻雜二氧化鈦之特性影響及其光催化反應動力模式
The effect of C content and calcination temperature on the characteristic and photocatalytic activity of nano-sized C-doped TiO2
作者: 陳芳吟
Chen, Fang-Yin
關鍵字: C-doped TiO2;碳摻雜二氧化鈦;Visible-light photocatalyst;glucose;Carbon dopan;Langmuir-Hinshelwood rate;ethylene;visible light illumination;photocatalytic oxidation;葡萄糖;可見光光觸媒;乙烯;光催化反應;Langmuir-Hinshelwood反應動力模式
出版社: 土壤環境科學系所
引用: Abeles, F. B., P. W. Morgan, et al. (1992). Ethylene in Plant Biology, Academic Press. Alberici, R. M. and W. E. Jardim (1997). "Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide." Applied Catalysis B-Environmental 14(1-2): 55-68. Avila, P., A. Bahamonde, et al. (1998). "Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts." Applied Catalysis B-Environmental 17(1-2): 75-88. Beaudry, R. M. (1999). "Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality." Postharvest Biology and Technology 15(3): 293. Biju, K. P. and M. K. Jain (2008). "Sol-gel derived TiO2:ZrO2 multilayer thin films for humidity sensing application." Sensors and Actuators B: Chemical 128(2): 407-413. Blake, N. R. and G. L. Griffin (1988). "Selectivity Control During The Photoassisted Oxidation Of 1-Butanol On Titanium-Dioxide." Journal of Physical Chemistry 92(20): 5697-5701. Burda, C., Y. B. Lou, et al. (2003). "Enhanced nitrogen doping in TiO2 nanoparticles." Nano Letters 3(8): 1049-1051. Chen, C., M. Long, et al. (2009). "Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species." Journal of Molecular Catalysis A: Chemical 314(1-2): 35-41. Choi, B. U., D. K. Choi, et al. (2003). "Adsorption equilibria of methane, ethane, ethylene, nitrogen, and hydrogen onto activated carbon." Journal Of Chemical And Engineering Data 48(3): 603-607. d''Hennezel, O., P. Pichat, et al. (1998). "Benzene and toluene gas-phase photocatalytic degradation over H2O and HCL pretreated TiO2: by-products and mechanisms." Journal Of Photochemistry And Photobiology A-Chemistry 118(3): 197-204. Dibble, L. A. and G. B. Raupp (1992). "Fluidized-Bed Photocatalytic Oxidation Of Trichloroethylene In Contaminated Airstreams." Environmental Science & Technology 26(3): 492-495. Duan, X. D., D. Z. Sun, et al. (2002). "Photocatalytic decomposition of toluene by TiO2 film as photocatalyst." Journal Of Environmental Science And Health Part A-Toxic/Hazardous Substances & Environmental Engineering 37(4): 679-692. Duran, A., C. Serna, et al. (1986). "Structural considerations about SiO2 glasses prepared by sol-gel." Journal of Non-Crystalline Solids 82(1-3): 69-77. Enache, C. S., J. Schoonman, et al. (2006). "Addition of carbon to anatase TiO2 by n-hexane treatment--surface or bulk doping?" Applied Surface Science 252(18): 6342-6347. Falconer, J. L. and K. A. Magrini-Bair (1998). "Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2." Journal Of Catalysis 179(1): 171-178. Fu, X., L. A. Clark, et al. (1996). "Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene." Journal of Photochemistry and Photobiology A: Chemistry 97(3): 181. Fu, X. Z., W. A. Zeltner, et al. (1995). "The Gas-Phase Photocatalytic Mineralization Of Benzene On Porous Titania-Based Catalysts." Applied Catalysis B-Environmental 6(3): 209-224. Gaya, U. I. and A. H. Abdullah (2008). "Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 9(1): 1-12. Gorska, P., A. Zaleska, et al. (2008). "TiO2 photoactivity in vis and UV light: The influence of calcination temperature and surface properties." Applied Catalysis B: Environmental 84(3-4): 440-447. Gu, D. E., Y. Lu, et al. (2008). "Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition." Chemical Communications(21): 2453-2455. Hager, S. and R. Bauer (1999). "Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide." Chemosphere 38(7): 1549-1559. Herrmann, J. M. (1999). "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants." Catalysis Today 53(1): 115-129. Hoffmann, M. R., S. T. Martin, et al. (1995). "Environmental Applications of Semiconductor Photocatalysis." Chemical Reviews 95(1): 69-96. Huang, Y., W. K. Ho, et al. (2008). "Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx." Langmuir 24(7): 3510-3516. Hung, C. H. and B. J. Marinas (1997). "Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films." Environmental Science & Technology 31(2): 562-568. Irie, H., S. Washizuka, et al. (2006). "Hydrophilicity on carbon-doped TiO2 thin films under visible light." Thin Solid Films 510(1-2): 21-25. Jacoby, W. A., D. M. Blake, et al. (1996). "Heterogeneous photocatalysis for control of volatile organic compounds in indoor air." Journal Of The Air & Waste Management Association 46(9): 891-898. Kim, S. B. and S. C. Hong (2002). "Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst." Applied Catalysis B-Environmental 35(4): 305-315. Ku, Y., C.-M. Ma, et al. (2001). "Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile." Applied Catalysis B: Environmental 34(3): 181-190. Ku, Y., C. M. Ma, et al. (2001). "Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile." Applied Catalysis B-Environmental 34(3): 181-190. Li, F. B. and X. Z. Li (2002). "The enhancement of photodegradation efficiency using Pt-TiO2 catalyst." Chemosphere 48(10): 1103-1111. Li, Y., D.-S. Hwang, et al. (2005). "Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst." Chemical Physics Letters 404(1-3): 25-29. Lichtin, N. N. and M. Sadeghi (1998). "Oxidative photocatalytic degradation of benzene vapor over TiO2." Journal Of Photochemistry And Photobiology A-Chemistry 113(1): 81-88. Lin, L., W. Lin, et al. (2005). "Uniform carbon-covered titania and its photocatalytic property." Journal of Molecular Catalysis a-Chemical 236(1-2): 46-53. Madhusudan Reddy, K., B. Baruwati, et al. (2005). "S-, N- and C-doped titanium dioxide nanoparticles: Synthesis, characterization and redox charge transfer study." Journal of Solid State Chemistry 178(11): 3352-3358. Mai, L., C. Huang, et al. (2009). "Effect of C doping on the structural and optical properties of sol-gel TiO2 thin films." Applied Surface Science 255(22): 9285-9289. Maira, A. J., K. L. Yeung, et al. (2001). "Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts." Applied Catalysis B-Environmental 29(4): 327-336. Maneerat, C., Y. Hayata, et al. (2003). "Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetable storage." Transactions of The Asae 46(3): 725-730. Mart, D. nez-Romero, et al. (2007). "Tools to Maintain Postharvest Fruit and Vegetable Quality through the Inhibition of Ethylene Action: A Review." Critical Reviews in Food Science and Nutrition 47: 543-560. Martinez-Romero, D., E. Dupille, et al. (2003). "1-Methylcyclopropene increases storability and shelf life in climacteric and nonclimacteric plums." Journal of Agricultural and Food Chemistry 51(16): 4680-4686. Morawski, A. W., M. Janus, et al. (2006). "TiO2-anatase modified by carbon as the photocatalyst under visible light." Comptes Rendus Chimie 9(5-6): 800-805. Noguchi, T., A. Fujishima, et al. (1998). "Photocatalytic Degradation of Gaseous Formaldehyde Using TiO2 Film." Environmental Science & Technology 32(23): 3831-3833. Obee, T. N. (1996). "Photooxidation of sub-parts-per-million toluene and formaldehyde levels an titania using a glass-plate reactor." Environmental Science & Technology 30(12): 3578-3584. Obee, T. N. and R. T. Brown (1995). "TIO2 PHOTOCATALYSIS FOR INDOOR AIR APPLICATIONS - EFFECTS OF HUMIDITY AND TRACE CONTAMINANT LEVELS ON THE OXIDATION RATES OF FORMALDEHYDE, TOLUENE, AND 1,3-BUTADIENE." Environmental Science & Technology 29(5): 1223-1231. Obee, T. N. and S. O. Hay (1997). "Effects of moisture and temperature on the photooxidation of ethylene on Titania." Environmental Science and Technology 31(7): 2034-2038. Okamoto, K., Y. Yamamoto, et al. (1985). "Kinetics Of Heterogeneous Photocatalytic Decomposition Of Phenol Over Anatase Tio2 Powder." Bulletin of the Chemical Society of Japan 58(7): 2023-2028. Park, H. K., D. K. Kim, et al. (1997). "Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4." Journal of the American Ceramic Society 80(3): 743-749. Park, Y., W. Kim, et al. (2009). "Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity." Applied Catalysis B: Environmental 91(1-2): 355-361. Phillips, L. A. and G. B. Raupp (1992). "Infrared spectroscopic investigation of gas--solid heterogeneous photocatalytic oxidation of trichloroethylene." Journal of Molecular Catalysis 77(3): 297-311. Porat, R., B. Weiss, et al. (1999). "Effects of ethylene and 1-methylcyclopropene on the postharvest qualities of ''Shamouti'' oranges." Postharvest Biology And Technology 15(2): 155-163. Pratt, H. K. and J. D. Goeschl (1969). "Physiological Roles of Ethylene in Plants." Annual Review of Plant Physiology 20(1): 541-584. Ranjit, K. T. and B. Viswanathan (1997). "Synthesis, characterization and photocatalytic properties of iron-doped TiO2 catalysts." Journal of Photochemistry and Photobiology A: Chemistry 108(1): 79-84. Raupp, G. B. and C. T. Junio (1993). "Photocatalytic Oxidation of Oxygenated Air Toxics." Appl. Sur. Sci. 72: 321. Ren, W. J., Z. H. Ai, et al. (2007). "Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2." Applied Catalysis B-Environmental 69(3-4): 138-144. Reyes-Garcia, E. A., Y. Sun, et al. (2009). "Solid-state NMR and EPR analysis of carbon-doped titanium dioxide photocatalysts (TiO2-xCx)." Solid State Nuclear Magnetic Resonance 35(2): 74-81. Rideh, L., A. Wehrer, et al. (1997). "Photocatalytic degradation of 2-chlorophenol in TiO2 aqueous suspension: Modeling of reaction rate." Industrial & Engineering Chemistry Research 36(11): 4712-4718. Rockafellow, E. M., X. Fang, et al. (2009). "Solid-State 13C NMR Characterization of Carbon-Modified TiO2." Chemistry of Materials 21(7): 1187-1197. Saltveit, M. E. (1999). "Effect of ethylene on quality of fresh fruits and vegetables." Postharvest Biology and Technology 15(3): 279. Shaban, Y. A. and S. U. M. Khan (2009). "Carbon modified (CM)-n-TiO2 thin films for efficient water splitting to H-2 and O-2 under xenon lamp light and natural sunlight illuminations." Journal of Solid State Electrochemistry 13(7): 1025-1036. Shanmugasundaram Sakthivel, H. K. (2003). "Daylight Photocatalysis by Carbon-Modified Titanium Dioxide13." Angewandte Chemie International Edition 42(40): 4908-4911. Shen, M., Z. Y. Wu, et al. (2006). "Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation." Materials Letters 60(5): 693-697. Song, K. C. and S. E. Pratsinis (2000). "The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania." Journal of Colloid and Interface Science 231(2): 289-298. Tachikawa, T., S. Tojo, et al. (2004). "Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2 Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy." The Journal of Physical Chemistry B 108(50): 19299-19306. Triebe, R. W., F. H. Tezel, et al. (1996). "Adsorption of methane, ethane and ethylene on molecular sieve zeolites." Gas Separation and Purification 10(1): 81-84. Tryba, B. (2008). "Increase of the Photocatalytic Activity of TiO2 by Carbon and Iron Modifications." International Journal of Photoenergy. Tseng, Y. H., C. S. Kuo, et al. (2006). "Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity." Nanotechnology 17(10): 2490-2497. Vorontsov, A. V., E. N. Kurkin, et al. (1999). "Study of TiO2 deactivation during gaseous acetone photocatalytic oxidation." Journal of Catalysis 186(2): 318-324. Wang, H. Q., Z. M. Zhang, et al. (2008). "A Novel One-step Photocatalytic Synthesis of Benzo[d]oxazol-2(3H)-one with C-doped TiO2 Nanoparticle." Chemistry Letters 37(11): 1156-1157. Wang, K.-H., H.-H. Tsai, et al. (1998). "The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead." Applied Catalysis B: Environmental 17(4): 313-320. Wang, K. H., J. M. Jehng, et al. (2002). "The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phase." Journal of Hazardous Materials 90(1): 63-75. Wang, K. H., H. H. Tsai, et al. (1998). "The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead." Applied Catalysis B-Environmental 17(4): 313-320. Wang, K. M. and B. J. Marinas (1993). Control of VOC Emissions from Air-Stripping Towers: Development of Gas-Phase Photocatalytic Process. Photocatalytic Purification and Treatment of Water and Air, Amsterdam, Elsevier. Wang, S. H., T. K. Chen, et al. (2007). "Nanocolumnar titania thin films uniquely incorporated with carbon for visible light photocatalysis." Applied Catalysis B-Environmental 76(3-4): 328-334. Wang, X. X., S. Meng, et al. (2007). "Multi-type carbon doping of TiO2 photocatalyst." Chemical Physics Letters 444(4-6): 292-296. Wills, R. B. H. and G. H. Kim (1995). "Effect of ethylene on postharvest life of strawberries." Postharvest Biology and Technology 6(3-4): 249. Wu, G., T. Nishikawa, et al. (2007). "Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response." Chemistry of Materials 19(18): 4530-4537. Xiao, Q. and L. Ouyang (2009). "Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: Effect of calcination temperature." Chemical Engineering Journal 148(2-3): 248-253. Xu, C., R. Killmeyer, et al. (2006). "Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination." Applied Catalysis B-Environmental 64(3-4): 312-317. Xu, J., Y. Wang, et al. (2008). "Preparation and electrochemical properties of carbon-doped TiO2 nanotubes as an anode material for lithium-ion batteries." Journal of Power Sources 175(2): 903-908. Yamashita, H., M. Honda, et al. (1998). "Preparation of Titanium Oxide Photocatalysts Anchored on Porous Silica Glass by a Metal Ion-Implantation Method and Their Photocatalytic Reactivities for the Degradation of 2-Propanol Diluted in Water." The Journal of Physical Chemistry B 102(52): 10707-10711. Yamashita, H., Y. Ichihashi, et al. (1999). "Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation." Journal of Synchrotron Radiation 6(3): 451-452. Yamazaki-Nishida, S., K. J. Nagano, et al. (1993). "Photocatalytic degradation of trichloroethylene in the gas phase using titanium dioxide pellets." Journal of Photochemistry and Photobiology A: Chemistry 70(1): 95-99. Yang, J., H. Z. Bai, et al. (2008). "Visible-light photocatalysis in nitrogen-carbon-doped TiO2 films obtained by heating TiO2 gel-film in an ionized N-2 gas." Thin Solid Films 516(8): 1736-1742. Yang, T. S., M. C. Yang, et al. (2006). "Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation." Applied Surface Science 252(10): 3729-3736. Yilmaz, E., K. S. Tandon, et al. (2001). "Absence of a clear relationship between lipid pathway enzymes and volatile compounds in fresh tomatoes." Journal of Plant Physiology 158(9): 1111-1116. Zhao, X. F., X. F. Meng, et al. (2004). "Preparation and photocatalytic activity of Pb-doped TiO2 thin films." Journal of Inorganic Materials 19(1): 140-146. Zhong, J., F. Chen, et al. (2010). "Carbon-Deposited TiO2: Synthesis, Characterization, and Visible Photocatalytic Performance." Journal of Physical Chemistry C 114(2): 933-939. Zorn, M. E., D. T. Tompkins, et al. (2000). "Catalytic and photocatalytic oxidation of ethylene on titania-based thin-films." Environ. Sci. Technol. 34(24): 5206-5210. 吳永俊 (1996). 近紫外光/二氧化鈦光催化分解三氯乙烯之研究, 國立中山大學環境工程研究所碩士論文. 高濂, 鄭珊, et al. (2004). 奈米光觸媒, 五南圖書出版股份有限公司. 劉安治 (1997). 近紫外光/二氧化鈦光催化分解氣相中低濃度四氯乙烯之操作參數探討, 國立中山大學環境工程研究所碩士論文.
二氧化鈦材料因具有理想能帶結構,且不受光腐蝕的特性,常應用於光催化反應處理有機污染物。但是純二氧化鈦的能隙為3.0 eV,僅能吸收紫外光波段,太陽光中僅佔入射光5 % ~ 8 %,其餘為可見光波段,且若能將材料的光吸收波長範圍移到可見光波段 (波長為400 nm ~ 700 nm),其應用性將大為提昇,因此本研究致力於改質二氧化鈦的特性,並以乙烯作為目標污染物,探討其動力模式,以期未來應用於蔬果的儲藏運輸環境,控制水果熟化速度保存新鮮度,以提高生產力及獲利。
本研究使用溶膠凝膠法製備碳摻雜二氧化鈦光觸媒,製備過程控制碳源與鈦源添加比例及鍛燒溫度,實驗所製備的碳摻雜二氧化鈦材料能隙降低至2.9 eV,可有效地吸收可見光波段,碳原子以interstitial carbon型態存在於二氧化鈦結構中。鍛燒溫度對特性影響的實驗結果顯示,溫度提高有助於rutile晶相生成,導致粒徑成長及比表面積減少;碳源與鈦源添加比例結果顯示,添加比例增加將可降低粒徑成長,並些微地提高比表面積。粒徑、比表面積、晶相組成和能隙能量皆影響著光催化效能,批次實驗結果顯示,碳源與鈦源添加比例為1,鍛燒溫度為400 oC時具有最大降解效率 (8 %)。

C-doped TiO2 have been prepared by sol-gel process. Glucose is applied as C source. The molar ratio of glucose to TBT is 0.02 to 3.00. Calcination temperatures ranged from 400 oC to 600 oC. Thus, the effect of molar ratio and calcination temperature on the characteristic of C-doped TiO2 is investigated by XRD, UV-Vis, FTIR, TGA, BET, DLS, and FESEM. Eventually, soft X-ray spectroscopy, X-ray absorption (XAS) and XPS are used to assess the relationship between the structure of nanocrystalline C-doped TiO2 and associated electronic properties as a function of calcination temperature and molar ratio of glucose to TBT. It has been observed that C dopants promote the phase transformation from anatase to rutile, as well as the optical band gap reduces to 2.9 eV. Spectrum of carbon indicates that the formation of C-O binding is assigned to the doped carbon to the interstitial one. The formation of a midgap level mixing with O2p and C2p levels locates 0.3 eV above the top of O2p valence band of TiO2 while the Ti3d conduction band is unchanged. Therefore, the optimum C content is 0.5% at 400 oC, namely, G10T4 which is the one with higher specific surface area (51.69 m2/g) and small particle size (10 nm). In the batch experiment, the removal of C2H4 about 8 % is highest for G10T4 in the period of 2 h.
Ethylene is chosen as the target. It illustrates that C-doped TiO2 is capable of oxidizing the C2H4 under the illumination of visible light. The photodegradation follows the Langmuir-Hinshelwood rate. All experiments were performed at 1 L/min flow rate so that the reaction rate was controlled by surface reaction. Three components, C2H4, O2, and H2O, were the key factors in the reaction. The reaction rate increased with increase in the concentration of C2H4, reaction temperature, O2 content, flow rate, and light intensity. The concentration of C2H4 had influence on reaction rate which increased with increase in C2H4 concentration result from the active sites enough on the surface of C-doped TiO2. The adsorption of O2 molecules was available to involve in the reaction with radicals. Thus, the reaction rate increased with increasing in the O2 content. The rate kept constant above 1 % due to the saturation of adsorption on the surface. The different adsorption sites between O2 and C2H4 was indicated. The increase of water vapor inhibited the reaction rate oppositely due to the competition between water vapor and C2H4. In a term of light intensity, the e--h+ recombination was dominant. In the future, the utilization of e--h+ pairs was the major subject to promote the efficiency for the degradation of organic compounds. Thus, the conceptual diagram in the photodegradation is populated.
其他識別: U0005-0702201123061200
Appears in Collections:土壤環境科學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.