Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28239
標題: 一條根 (闊葉大豆 Glycine tomentella) 之根瘤菌分離及特性研究
Isolation and characterization of rhizobia from I-Tiao-Gung (Glycine tomentella) plant
作者: 邱智琦
Chiu, Chih-Chi
關鍵字: I-Tiao-Gung;一條根;Glycine tomentella;Rhizobium;闊葉大豆;根瘤菌
出版社: 土壤環境科學系所
引用: 于立諾。1965。野生大豆硬粒種子促進發芽之研究。國立中興大學農藝學系學士論文。台中。 王麗珠。1998。金門地區一條根藥材之生藥學研究。中國醫藥大學中國藥學研究所碩士論文。台中。 王錦堂、賴文龍。1987。施用根瘤菌及內生菌根菌對春作大豆生長效 應之研究臺中區農業改良場研究彙報 15:45-53。 林詩耀。2007。重油降解細菌之表現型及基因型特性研究。國立中興 大學土壤環境科學系碩士論文。台中 柯裕仁。2002。一條根類藥材之鑑別及藥理活性研究。中國醫藥大學中國藥學研究所博士論文。台中。 洪麗蓉。1995。綠肥溶磷根瘤菌的分離及其特性之研究。國立中興 大學土壤研究所碩士論文。 黃漢津、胡敏夫、劉新裕。1986。藥用植物種子之型態與發芽研究。 中華農業研究 35:449-459。 游添榮、曾富生。1997。台灣野生種大豆族群之變異研究。I. G. formosana, G. tabacina及G. tomentella族群在生育地上植物特性。中華農學會報177: 28-40。 張恭勝。1966。野生大豆硬粒種子促進發芽之研究。國立中興大學農藝學系學士論文。台中。 莊清漳。1965。台灣豆科牧草及綠肥。台北。 賴文龍、蔡宜峰。2006。施用溶磷菌與根瘤菌複合菌、氮肥及磷肥對 落花生生長效應之研究。臺中區農業改良場研究彙報 93:71-79。 賴文龍、蔡宜峰。2004。根瘤菌及氮肥施用對秋作菜豆生長效應之研 究。臺中區農業改良場研究彙報 85:47-55。 葉茂生、鄭隨和。1991。台灣豆類植物資源彩色圖鑑。行政院農業委員會。 趙震慶、王銀波。1991。重金屬於台灣主要土類之土壤中對囊叢枝 菌根與大豆固氮作用之影響。中國農業化學會誌。29:290-300。 趙震慶、楊秋忠。1985。不同培養基對銀合歡根瘤菌在不同石灰量土 壤中存活之影響。中國農業化學會誌。23:236-241。 應紹舜。1985。台灣高等植物彩色圖誌(2)。台北。 Albareda, M., D.N. Rodríuez-Navarro, and F.J. Temprano. 2009. Soybean inoculation: Dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crops Research 113:352-356. Bach, M.K., W.E. Magge and R.H. Burris. 1958. Translocation of photosynthetic products to soybean nodules and their role in nitrogen fixation. Plant Physiol 33:118-124. Baucer, W.D. 1981. Infection of legumes by rhizobia. Ann. Rev. Plant Physiol 32:407-449. Bergersen, F. J. 1974. Formation and function of bacteroids. p. 474-495 In A. Quispel (ed.) The Biology of Nitrogen Fixation, North-Holland Pub. Co. Oxford. Brockwell, J., A. Pilka, and R. A. Holliday. 1991. Soil pH is a major determinant of the numbers of naturally occurring Rhizobium meliloti in non-cultivated soils of New South Wales. Aust. J. Exp. Agric. 31:211-219. Bushby, H.V.A. 1993. Colonization of rhizospheres by Bradyrhizobium sp. in relation to strain persistence and nodulation of some pasture legumes. Soil Biol. Biochem.25: 597-605. Chen, W.-X., Z.-Y. Tan, J.-L. Gao, Y. Li, and E.-T. Wang. 1997. Rhizobium hainanense sp. nov., isolated from tropical legumes. Int. J. Syst. Bacteriol. 47:870-873. Cheng, Q. 2008. Perspectives in biological nitrogen fixation research. J. Integr. Plant Biol. 50:786-798. Chiu, K. Y., C. S. Wang, and J. M. Sung. 1995. Lipid peroxidation and peroxide-scanvenging enzymes associated with accelerated aging and hydration of watermelon seeds differing in ploidy. Physiol. Plant. 94:441-446 Davies, B. E. 1974. Loss-on-ignition as an estimate of soil organic Matter. Soil Sci. Soc. Am. Proc. 38:150-151. Dazzo, F. B., G. L. Truchet, L. E. Sherwood, E. M. Hrabak, M. Abe, and S. H. Pankratz. 1984. Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl. Environ. Microbiol. 128:1829-1838. Dazzo, F. B., C. A. Napoli, and D. H. Hubbell. 1976. Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl. Environ. Microbiol. 127:351-360. Dart, P. J. 1974. Development of root-nodule symbioses. p. 381-429. In A. Quispel (Ed.) The biology of nitrogen fixation. North-Holland Publ. Co. Amsterdam, Netherlands. Elkan, G.H. 1992. Taxonomy of the rhizobia. Can. J. Microbiol. 38:446-450. Franco, A.A., and D.N. Munns. 1982. Acidity and aluminum restraints on nodulation, nitrogen fixation, and growth of Phaseolus vulgaris in solution culture. Soil Sci Soc Am J 46:296-301. Franssen, H. J., I. Vijn, W. C. Yang and T. Bisseling. 1992. Developmental Aspects of the Rhizobium-Legume Symbiosis.Plant Mol. Biol. 19:89-107. Gage, D.J. 2004. Infection and invasion of roots by symbiotic, nitrogen fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68:280-300. Gan, Y., I. Stulen, H. van Keulen, and P. J. C. Kuiper. 2003. Effect of fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max (L.) Merr.) genotypes. Field Crops Res. 80:147-155. Gee, G.W. and J.W. Bauder. 1984. Particle size analysis. In: KLUTE, A., ed. Methods of soil analysis, Part 1: Physical and mineralogical methods, 2.ed. ASA-SSSA. Agronomy monograph. 9:383-411. Madison. Graham, P.H., and C.P. Vance. 2000. Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Research 65:93-106. Graham, P.H., K. J. Draeger, M. L. Ferrey, M. J. Conroy, B. E. Hammer, E. Martinez, S. R. Aarons, and C. Quinto. 1994. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR 1899. Can. J. Microbiol. 40:198-207. Gu, C.T., E.T. Wang, C.F. Tian, T.X. Han, W.F. Chen, X.H. Sui, and W.X. Chen. 2008. Rhizobium miluonense sp. nov., a symbiotic bacterium isolated from Lespedeza root nodules. Int. J. Syst. Evol. Microbiol. 58:1364-1368. Han, T.X., E.T. Wang, L.J. Wu, W.F. Chen, J.G. Gu, C.T. Gu, C.F. Tian, and W.X. Chen. 2008. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int. J. Syst. Evol. Microbiol. 58:1693-1699. Hennecke, H., K. Kaluza, B. Thöny, M. Fuhrmann, W. Ludwig, and E. Stackebrandt. 1985. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch. Microbiol. 142:342–348. Islam, M.S., H. Kawasaki, Y. Muramatsu, Y. Nakagawa, and T. Seki. 2008. Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Bioscience, Biotechnology, and Biochemistry 72:1416-1429. Jayawardane, N.S., H.D. Barrs, W.A. Muirhead, J. Blackwell, E. Murray, and G. Kirchhof. 1995. Lime-slotting technique to ameliorate subsoil acidity in a clay soil. 2. Effects on medic root growth, water extraction and yield. Aust. J. Soil Sci. 33:443-459. Jensen, E.S., and J.Z. Castellanos. 1994. The role of grain legumes in nitrogen cycling of low input sustainable agro-ecosystems. Transactions of the XVth World Congress on Soil Science, Acapulco, Mexico 5:32-45. Jordan, D.C. 1982. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. 32:136-139. Jordan, D.C. 1984. Family III Rhizobiaceae. In: Krieg, N.R., Holt, J.G. (Eds.), Bergey’s Mannual of Systematic Bacteriology, ninth ed. 1:235-244. Kato, K., K. Kanahama, and Y. Kanayama. Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules. Journal of Plant Physiology. 167:238-241. Keeney, D. R. and D. W. Nelson. 1982. Nitrogen-inorganic form. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. ASA-SSSA Agronimy monographs. 9: 643-698. Madison, Wisconsin. Kinzig, A.P., and R.H. Socolow. 1994. Is nitrogen fertilizer use nearing a balance-reply. Phys. Today 47:24-35. Koeuth, T., L. Versalovic, and J.R. Lupski. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumonia box elements in diverse bacteria. Genome Res. 5:408-418. Kucey, R.M.N., H. H. Janzen, and M. E. Leggett. 1989. Microbially mediated increase in plant-available phoshorus. Adv. in Agron 42:199-227. Kuykendall, L.D., B. Saxena, T. E. Devine, and S. E. Udell. 1992. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can. J. Microbiol. 38:501-505. Leprince, O., N. Atherton, R. Deltour, and G. A. F. Hendry. 1994. The involnement of respiration in free radical precesses during loss of desiccation tolerance in germinating Zea mays L. Plant Physiol. 140:1333-1339. Lie, T.A. 1981. Environmental physiology of the legume-Rhizobium symbiosis. p. 108. In W. J. Broughton (ed.) Nitrogen fixation Vol. 1:Ecology. Oxford University Press, New York. Lindström, K., M. Murwira, A. Willems, and N. Altier. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia. Research in Microbiology(2010), doi:10.1016/j.resmic. 2010.05.005. Lodeiro, A. R., and G. Favelukes. 1999. Early interactions of Bradyrhizobium japonicum and soybean roots: specificity in the process of adsorption. Soil Biol. Biochem. 31:1405-1411. Long, S. A. 1996. Rhizobium symbiosis: nod factors in perspective. Plant Cell. 8:1885-1898. Lynch, J.P., and S.E. Beebe. 1995. Adaption of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hort. Science. 30:1165-1171. Lynch, J.P., and J.J. VanBeem. 1993. Growth and architecture of seedling roots of common bean genotypes. Crop Sci. 33:1253-1257. McLean, E. O. 1982. Soil pH and lime requirement. In A. L. Page et al. (eds.) Methods of soil analysis. Part 2. 2nd ed. ASA-SSSA Agronimy monographs. 9: 199-224. Madison, Wisconsin. Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15(12): 1409-1416 Miller, S. H., R. M. Elliot, J. T. Sullivan, and C. W. Ronson. 2007. Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiol. 153:3184-3195. Morrison, N.A., M.J. Trinick and B.G. Rolfe. 1986. Comparison of the host range of fast-growing R. japonicum strains with a fast-growing isolate from Lablab. Plant and Soil. 92:313-317. Murashige, T., and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacoo tissue cutures. Physiol. Plant. 15:473-497 Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27:31-36 Mylona, P., K. Pawlowski, and T. Bisseling. 1995. Symbiotic nitrogen fixation. Plant Cell. 7:869-885 Pueppke, S.G. 1988. Nodulating associations among rhizobia and legumes of the genus Glycine subgenus Glycine. Plant and Soil. 109:189-193. Quispel, A. 1988. Hellriegel and Wilfarth’s discovery of nitrogen fixation hundred years ago. In Bothe. H., F. J. de Bruijn and W. E. Newton. Nitrogen Fixation : Hundred years After. P.3-12. Germany. Gustav Fisher Verlag, Gustave Fischer Verlag GmbH & Co KG. Ramirez-Bahena, M.H., A. Peix, R. Rivas, M. Camacho, D.N. Rodriguez-Navarro, P.F. Mateos, E. Martinez-Molina, A. Willems, and E. Velazquez. 2009. Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int. J. Syst. Evol. Microbiol. 59:1929-1934. Rivas, R., A. Willems, J.L. Palomo, P. Garcia-Benavides, P.F. Mateos, E. Martinez-Molina, M. Gillis, and E. Velazquez. 2004. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int. J. Syst. Evol. Microbiol. 54:1271-1275. Rosas, J.C., J.A. Castro, E.A. Robleto, and J. Handelsman, 1998. A method for screening Phaseolus vulgaris L. germplasm for preferential nodulation with a selected Rhizobium etli strain. Plant Soil. 203:71-78. Salvagiotti, F., K.G. Cassman, J.E. Specht, D.T. Walters, A. Weiss, and A. Dobermann. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research. 108:1-13. Senaratna, T., and B. D. McKersie. 1984. Association between membrane phase properties and dehydration injury in soybean axws. Plant Physiol. 76: 759-762 Senaratna, T., B. D. McKersie, and R. H. Stinson. 1985. Antioxandidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiol. 78:168-171 Shen F.T., and C.C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250:221-227. Shen, F.T., P. Kämpfer, C.C. Young, W.A. Lai, and A.B. Arun. 2005. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int. J. Syst. Evol. Microbiol. 55:1301-1304. Smith, D.C., and A.E. Douglas. 1987. Symbiosis between nitrogen-fixing prokaryotes and plant roots. p. 64-92. The biology of symbiosis. Edward Arnold Ltd., New York Stackebrandt, E., W. Liesack, and B. M. Goebel. 1993. Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB J. 7:232-236 Sung, J. M., and T. L. Jeng. 1994. Lipid peroxidation and peroxide-scavenging enzymes associated with accelerated aging of peanut seed. Physiol. Plant. 91:51-55 Surange, S., A. G. Wollum, N. Kumar, and C.S. Nautiyal. 1997. Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can. J. Microbiol. 43:891-894. Taylor, A. G., P. S. Allen, M. A. Bennett, K. J. Bradford, J. S. Burris, and M. K. Misra. 1998. Seed enhancement. Seed Sci. Res. 8:245-256. Tomooka, N., N. Kobayash, R. N. Kambuou, J. Risimeri, J. Poafa, A. Apa, A. Kaga, T. Isemura, Y. Kuroda and A. Vaughan Duncan. 2005. Ecological survey and conservation of legume-symbiotic rhizobia genetic diversity in Papua New Guinea, 2004. Annual Report on Exploration and Introduction of Plant Genetic Resources 21:135-143. Trinick, M. J. 1982. Host-Rhizobium associations. In nitrogen fixation in legumes. Ed. J. M. Vincent. Academic Press, Sydney. pp 111-112. Trinick, M. J., and P. A. Hadobas. 1989. Competition by Bradyrhizobium strains for nodulation of the nonlegume Parasponia andersonii. Appl. Environ. Microbiol. 55:1242-1248. Valverde, A., J.M. Igual, A. Peix, E. Cervantes, and E. Velazquez. 2006. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int. J. Syst. Evol. Microbiol. 56:2631-2637. Vance, C.P. 1998. Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink, H.P., et al. (Eds.). The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, pp. 509-530. Vinuesa, P., M. Leon-Barrios, C. Silva, A. Willems, A. Jarabo-Lorenzo, R. Perez-Galdona, D. Werner, and E. Martinez-Romero. 2005. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int. J. Syst. Evol. Microbiol. 55:569-575. Weaver, R. W., and L. R. Frederick. 1982. Rhizobium. In A. L. page (ed.) Methods of Soil Analysis Part II. Agronomy 49: 1043-1057. ASA, New York, USA. Xu, L.M., C. Ge, Z. Cui, J. Li, and H. Fan. 1995. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int. J. Syst. Bacteriol. 45:706-711. Yao, Z.Y., F.L. Kan, E.T. Wang, G.H. Wei, and W.X. Chen. 2002. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int. J. Syst. Evol. Microbiol. 52:2219-2230. Zapata, F., S.K.A. Danso, G. Hardarson, and M. Fried. 1987. Time course of nitrogen fixation in field-grown soybean using nitrogen-15 methodology. Agron. J. 79:172-176. Zarucchi, J. L. 1989. Advances in legume biology. Edited by stirton, C. H., and J. L. Zarucchi. p. 545-557. Missouri Botanical Gardon, New York.
摘要: 
在農業生產中,氮是重要且大量存在的元素。然而大量施用的化學氮肥被植物吸收利用率只有50%左右,流失的氮肥不僅浪費且對生態環境影響巨大。一條根學名為闊葉大豆(Glycine tomentella),現今金門農試所積極推廣當地農民種植做為經濟作物,施用之化學肥料一旦流失將直接影響海洋生態。因此可利用根瘤菌與豆科植物形成共生固氮根瘤,固定氮氣轉換成植物可直接利用態氮(NH3)。本研究由不同的土壤中篩選出能與一條根共生之根瘤菌,分析菌株種類及特性,找出適合接種且固氮能力最佳之菌株。篩選菌株前,必須先克服種子發芽率不佳的問題,將種子浸泡於濃硫酸中10分鐘,發芽率可以提升至80%左右。而種子經過脫水乾燥保存於7℃環境下,於90天後仍可維持相同的發芽率。以三種土壤分別種植一條根,篩選並純化自然結瘤之根瘤菌株。三種土壤中共純化出30株菌,其中有三株生長快速。經過初步回接測驗後,共有12株菌可以成功以人工接種方式結瘤。將成功結瘤之菌株進行16S rDNA鑑定分析,分別為Bradyrhizobium elkanii、Bradyrhizobium iriomotense、Bradyrhizobium iaoningense及Rhizobium multihospitium,共2屬4種根瘤菌株。以Murashige and Skoog培養基種植一條根並測試此4種菌在不同pH下之族群數及共生結瘤能力,發現在pH 6.8時有最大族群數及結瘤數。為了找出在自然土壤環境中也能有良好共生且固氮活性高之菌株,分別以4株菌接種一條根種植於3種土壤上。其中Br. iriomotense有良好的結瘤數且固氮活性為4株菌中最高。但若種植於無機態氮含量高(327 mg/kg)之土壤時,則所有菌株的結瘤能力及固氮活性都會被抑制。

Nitrogen is abundant and an important element in agricultural production. However, profusely applying chemical nitrogen fertilizer may not enhance the absorbability efficiency of plants (only about 50 % efficiency), but leads to waste and tremendous impact on the environment. Broadleaf soybean (Glycine tomentella) is called “I-Tiao-Gung” in local name in Chinese. Now Kinmen County Agricultural Research Institute actively promotes the local farmers to plant “I-Tiao-Gung” as commercial crop, nevertheless, once the applied fertilizer washed away, it would directly affect the marine ecology. Symbiosis of legumes and Rhizobium would form nodule to convert atmospheric nitrogen into ammonia (NH3), which plants could use directly. This study selected the most suitable Rhizobium from different soils that was able to be symbiotic with “I-Tiao-Gung” and analyze the type and characteristics of isolated Rhizobium. For overcoming the problem regarding germination rate, soaking the seeds of “I-Tiao-Gung” into condensed sulfuric acid for 10 minutes could increase the germination rate to 80 %. “I-Tiao-Gung” was planted in three soils, the one that could develop nodule with Rhizobium were screened and purified. In three soils, there were 30 strains were isolated and three of them grew faster among all 30 strains. After preliminary inoculation test, a total of 12 strains had successful nodule. The results of 16S rDNA identification indicated they were Bradyrhizobium elkanii, Bradyrhizobium iriomotense, Bradyrhizobium iaoningense, and Rhizobium multihospitium, respectively, which gave a total of 4 species and 2 genera. Four strains identified were tested to compare the population number and the ability of symbiotic nodulation under different pH. Results showed that at pH 6.8 would give the best population and nodule number. To examine the ability of symbiotic nodulation in soil environment, “I-Tiao-Gung” were inoculated with four strains in three soils. Among four inoculated strains, Br. iriomotense had the best nodule quantity and the highest nitrogenase activity. However, high available nitrogen would inhibited ability of nodulation and nitrogen fixation activity.
URI: http://hdl.handle.net/11455/28239
其他識別: U0005-1108201014210600
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.