Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28278
標題: 絕對厭氧異化性鐵還原微生物新種特性之研究
The research of characteristics of new species of anaerobic dissimilatory Fe(III)-reduction microorganisms
作者: 劉祐誠
Liu, You-Cheng
關鍵字: Dissimilatory Fe(III)-reduction;異化性鐵還原;Anaerobic;Firmicutes;novel species;厭氧;厚壁菌門;新種
出版社: 土壤環境科學系所
引用: Anderson, R.T., and D.R. Lovley. 1997. Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microb. Ecol. 15:289-350. Anderson, R.T., H.A. Vrionis, I. Ortiz-Bernad, C.T. Resch, P.E. Long, R. Dayvault, K. Karp, S. Marutzky, D.R. Metzler, A. Peacock, D.C. White, M. Lowe, and D.R. Lovley. 2003. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69:5884-5891. Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese, and R.S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260-296. Boga, H.I., R. Ji, W. Ludwig, and A. Brune. 2007. Sporotalea propionica gen. nov. sp. nov., a hydrogen-oxidizing, oxygen-reducing, propionigenic Firmicute from the intestinal tract of a soil-feeding termite. Arch. Microbiol. 187:15-27. Bond, D.R., and D.R. Lovley. 2002. Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ. Microbiol. 4:115-124. Bond, D.R., and D.R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69:1548-1555. Bond, D.R., D.E. Holmes, L.M. Tender, and D.R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483-485. Bradley, P.M., F.H. Chapelle, and D.R. Lovley. 1998. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64:3102-3105. Brock, T.D., S. Cook, S. Petersen, and J.L. Mosser. 1976. Biogeochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim. Cosmochim. Acta 40:493-500. Brosius, J., M.L. Palmer, P.J. Kennedy, and H.F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75:4801-4805. Butler, J.E., R.H. Glaven, A. Esteve-Nunez, C. Nunez, E.S. Shelobolina, D.R. Bond, and D.R. Lovley. 2006. Genetic Characterization of a Single Bifunctional Enzyme for Fumarate Reduction and Succinate Oxidation in Geobacter sulfurreducens and Engineering of Fumarate Reduction in Geobacter metallireducens. J. Bacteriol. 188:450-455. Caccavo, F.J., D.J. Lonergan, D.R. Lovley, M. Davis, J.F. Stolz, and M.J. McInerney. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60:3752-3759. Coates, J., E. Phillips, D. Lonergan, H. Jenter, and D. Lovley. 1996. Isolation of Geobacter species from diverse sedimentary environments. Appl. Environ. Microbiol. 62:1531-1536. Coleman, M.L., D.B. Hedrick, D.R. Lovley, D.C. White, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361:436-438. Dees, S.B., and C.W. Moss. 1975. Cellular fatty acids of Alcaligenes and Pseudomonas species isolated from clinical specimens. J. Clin. Microbiol. 1:414-419. Eden, P.A., T.M. Schmidt, R.P. Blakemore, and N.R. Pace. 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41:324-325. Edwards, U., T. Rogall, H. Blocker, M. Emde, and E.C. Bottger. 1989. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17:7843-7853. Finneran, K.T., and D.R. Lovley. 2001. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Environ. Sci. Technol. 35:1785-1790. Finneran, K.T., R.T. Anderson, K.P. Nevin, and D.R. Lovley. 2002. Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam. 11:339-357. Fox, G.E., E. Stackebrandt, R.B. Hespell, J. Gibson, J. Maniloff, T.A. Dyer, R.S. Wolfe, W.E. Balch, R.S. Tanner, L.J. Magrum, L.B. Zablen, R. Blakemore, R. Gupta, L. Bonen, B.J. Lewis, D.A. Stahl, K.R. Luehrsen, K.N. Chen, and C.R. Woese. 1980. The phylogeny of Prokaryotes. Science 209:457-463. Garrity, G.M., and J.G. Hoult. 2001. Taxonomic outline of the Archaea and Bacteria, p. 161-162, In D. R. Boone and R. W. Castenholz, eds. Bergey''s manual of systematic bacteriology, Vol. 1, 2nd ed. Springer Berlin Heidelberg, New York. Gergerich, R.C., and C.V. Dolja. 2006. Introduction to plant viruses, the invisible foe. [Online]. Available by plant parasitic host:www.apsnet.org http://www.apsnet.org/education/introplantpath/PathogenGroups/plantViruses/text/fig28.htm (verified 2010/3/25). Gold, T. 1992. The deep, hot biosphere. Proc. Natl. Acad. Sci. USA 89:6045-6049. Gonzalez, J.M., and C. Saiz-Jimenez. 2002. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4:770-773. Gorby, Y.A., and D.R. Lovley. 1991. Electron transport in the dissimilatory iron reducer, GS-15. Appl. Environ. Microbiol. 57:867-870. Gosner, A.S., K. Kusel, D. Schulz, S. Trenz, G. Acker, C.R. Lovell, and H.L. Drake. 2006. Trophic interaction of the aerotolerant anaerobe Clostridium intestinale and the acetogen Sporomusa rhizae sp. nov. isolated from roots of the black needlerush Juncus roemerianus. Microbiology 152:1209-1219. Halebian, S., B. Harris, S.M. Finegold, and R.D. Rolfe. 1981. Rapid method that aids in distinguishing gram-positive from gram-negative anaerobic bacteria. J. Clin. Microbiol. 13:444-448. He, Q., and R.A. Sanford. 2003. Characterization of Fe(III) reduction by chlororespiring Anaeromxyobacter dehalogenans. Appl. Environ. Microbiol. 69:2712-2718. Heyrman, J., B. Vanparys, N.A. Logan, A. Balcaen, M. Rodriguez-Diaz, A. Felske, and P. De Vos. 2004. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse a grasslands. Int. J. Syst. Evol. Microbiol. 54:47-57. Holmes, D.E., D.R. Bond, and D.R. Lovley. 2004a. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70:1234-1237. Holmes, D.E., J.S. Nicoll, D.R. Bond, and D.R. Lovley. 2004b. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl. Environ. Microbiol. 70:6023-6030. Holmes, D.E., D.R. Bond, R.A. O''Neil, C.E. Reimers, L.R. Tender, and D.R. Lovley. 2004c. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48:178-190. Hungate, R.E. 1969. A roll tube method for cultivation of strict anaerobes, p. 117-132, In J. R. Norris and D. W. Ribbons, eds. Methods in microbiology, Vol. 3B. Academic Press Inc., New York. Jannasch, H.W. 1995. Microbial interactions with hydrothermal fluids, p. 273-296, In S. E. Humphris, et al., eds. Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington, D.C. Kampfer, P., and R.M. Kroppenstedt. 1996. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can. J. Microbiol./Rev. Can. Microbiol. 42:989-1005. Kappler, A., and A. Brune. 2002. Dynamics of redox potential and changes in redox state of iron and humic acids during gut passage in soil-feeding termites (Cubitermes spp.). Soil Biol. Biochem. 34:221-227. Karl, D.M. 1995. Ecology of free-hydrothermal vent microbial communities, p. 35-124, In D. M. Karl, ed. The Microbiology of deep-sea hydrothermal vents. CRC press, New York. Kashefi, K., and D.R. Lovley. 2000. Reduction of Fe(III), Mn(IV), and toxic metals at 100 degrees C by Pyrobaculum islandicum. Appl. Environ. Microbiol. 66:1050-1056. Kashefi, K., D.E. Holmes, A.L. Reysenbach, and D.R. Lovley. 2002a. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl. Environ. Microbiol. 68:1735-1742. Kashefi, K., J.M. Tor, K.P. Nevin, and D.R. Lovley. 2001. Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl. Environ. Microbiol. 67:3275-3279. Kashefi, K., J.M. Tor, D.E. Holmes, C.V. Gaw Van Praagh, A.L. Reysenbach, and D.R. Lovley. 2002b. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int. J. Syst. Evol. Microbiol. 52:719-728. Kluge, A.G., and J.S. Farris. 1969. Quantitative phyletics and the evolution of Anurans. Syst. Zool. 18:1-32. Koeuth, T., J. Versalovic, and J.R. Lupski. 1995. Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res. 5:408-418. Krumholz, L.R. 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47:1262-1263. Krumholz, L.R., R. Sharp, and S.S. Fishbain. 1996. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl. Environ. Microbiol. 62:4108-4113. Kuhner, C.H., C. Frank, A. Grieshammer, M. Schmittroth, G. Acker, A. Gosner, and H.L. Drake. 1997. Sporomusa silvacetica sp. nov., an acetogenic bacterium isolated from aggregated forest soil. Int. J. Syst. Bacteriol. 47:352-358. Kumar, S., K. Tamura, I.B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244-1245. Kusel, K., U. Roth, and H.L. Drake. 2002. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions. Environ. Microbiol. 4:414-421. Kusel, K., T. Dorsch, G. Acker, and E. Stackebrandt. 1999. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl. Environ. Microbiol. 65:3633-3640. Lane, D.J., K.G. Field, G.J. Olsen, and N.R. Pace. 1988. Reverse transcriptase sequencing of ribosomal RNA for phylogenetic analysis. Methods Enzymol. 167:138-144. Lin, B., H.W. Van Verseveld, and W.F. Roling. 2002. Microbial aspects of anaerobic BTEX degradation. Biomed. Environ. Sci. 15:130-144. Lloyd, J.R., V.A. Sole, C.V. Van Praagh, and D.R. Lovley. 2000. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl. Environ. Microbiol. 66:3743-3749. Lonergan, D.J., H.L. Jenter, J.D. Coates, E.J.P. Phillips, T.M. Schmidt, and D.R. Lovley. 1996. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178:2402-2408. Lovley, D.R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259-287. Lovley, D.R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47:263-290. Lovley, D.R. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind. Microbiol. 14:85-93. Lovley, D.R. 1997a. Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Ind. Microbiol. Biotechnol. 18:75-81. Lovley, D.R. 1997b. Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 20:305-313. Lovley, D.R. 2000. Fe(III) and Mn(IV) reduction, p. 3-30, In D. R. Lovley, ed. Environmental Microbe-Metal interactions. ASM Press, Washington, DC. Lovley, D.R. 2003. Potential role of dissimilatory iron reduction th the early evolution of microbial respiration, p. 301-313, In J. Seckbach, ed. Origins, Evolution and Biodiversity of Microbial Life. Kluwer, Netherlands. Lovley, D.R. 2006. Microbial energizers: fuel cells that keep on going. Microbe 1(7):323-329. Lovley, D.R., and R.T. Anderson. 2000. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeol. J. 8:77-88. Lovley, D.R., and J.D. Coates. 2000. Novel forms of anaerobic respiration of environmental relevance. Curr. Opin. Microbiol. 3:252-256. Lovley, D.R., and S. Goodwin. 1988. Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 52:2993-3003. Lovley, D.R., and D.J. Lonergan. 1990. Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl. Environ. Microbiol. 56:1858-1864. Lovley, D.R., and E.J.P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51:683-689. Lovley, D.R., and E.J.P. Phillips. 1987. Competitive Mechanisms for Inhibition of Sulfate Reduction and Methane Production in the Zone of Ferric Iron Reduction in Sediments. Appl. Environ. Microbiol. 53:2636-2641. Lovley, D.R., and E.J.P. Phillips. 1988a. Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol. J. 6:145-155. Lovley, D.R., and E.J.P. Phillips. 1988b. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Appl. Environ. Microbiol. 54:1472-1480. Lovley, D.R., and E.J.P. Phillips. 1989. Requirement for a Microbial Consortium To Completely Oxidize Glucose in Fe(III)-Reducing Sediments. Appl. Environ. Microbiol. 55:3234-3236. Lovley, D.R., and E.J.P. Phillips. 1992a. Reduction of uranium by Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 58:850-856. Lovley, D.R., and E.J.P. Phillips. 1992b. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26:2228-2234. Lovley, D.R., F.H. Chapelle, and E.J.P. Phillips. 1990. Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic coastal plain. Geology 18:954-957. Lovley, D.R., R.C. Greening, and J.G. Ferry. 1984. Rapidly growing rumen methanogenic organism that synthesizes coenzyme M and has a high affinity for formate. Appl. Environ. Microbiol. 48:81-87. Lovley, D.R., D.E. Holmes, and K.P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219-286. Lovley, D.R., J.C. Woodward, and F.H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic-hydrocarbons using Fe(III) ligands. Nature 370:128-131. Lovley, D.R., J.C. Woodward, and F.H. Chapelle. 1996a. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 62:288-291. Lovley, D.R., E.J.P. Phillips, Y.A. Gorby, and E.R. Landa. 1991. Microbial reduction of uranium. Nature 350:413-416. Lovley, D.R., E.E. Roden, E.J.P. Phillips, and J.C. Woodward. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar. Geol. 113:41-53. Lovley, D.R., J.D. Coates, E.L. BluntHarris, E.J.P. Phillips, and J.C. Woodward. 1996b. Humic substances as electron acceptors for microbial respiration. Nature 382:445-448. Lovley, D.R., M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips, and D.I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297-300. Lovley, D.R., J.L. Fraga, E.L. Blunt-Harris, L.A. Hayes, E.J.P. Phillips, and J.D. Coates. 1998. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim. Hydrobiol. 26:152-157. Myers, C.R., and J.M. Myers. 1997. Isolation and characterization of a transposon mutant of Shewanella putrefaciens MR-1 deficient in fumarate reductase. Lett. Appl. Microbiol. 25:162-168. Nevin, K.P., K.T. Finneran, and D.R. Lovley. 2003. Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl. Environ. Microbiol. 69:3672-3675. Ottow, J.C. 1970. Bacterial mechanisms of gley formation in artificially submerged soil. Nature 225:103. Ouattara, A.S., A.S. Traore, and J.-L. Garcia. 1992. Characterization of Anaerovibrio burkinabensis sp. nov., a lactate fermenting bacterium isolated from rice field soils. Int. J. Syst. Bacteriol. 42:390-397. Reimers, C.E., L.M. Tender, S. Fertig, and W. Wang. 2001. Harvesting energy from the marine sediment-water interface. Environ. Sci. Technol. 35:192-195. Robb, F.T. 1995. Archaea: a laboratory manual. Cold Spring Harbor Laboratory, New York. Roden, E.E., and D.R. Lovley. 1993. Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans. Appl. Environ. Microbiol. 59:734-742. Roling, W.F.M., and H.W. van Verseveld. 2002. Natural attenuation: what does the subsurface have in store? Biodegradation 13:53-64. Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. Sambrook, J., and D.W. Russell. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory, New York. Sattley, W.M., D.O. Jung, and M.T. Madigan. 2008. Psychrosinus fermentans gen. nov., sp. nov., a lactate-fermenting bacterium from near-freezing oxycline waters of a meromictic Antarctic lake. FEMS Microbiol. Lett. 287:121-127. Schleifer, K.H., M. Leuteritz, N. Weiss, W. Ludwig, G. Kirchhof, and H. Seidel-Rufer. 1990. Taxonomic study of anaerobic, gram-negative, rod-shaped bacteria from breweries: emended description of Pectinatus cerevisiiphilus and description of Pectinatus frisingensis sp. nov., Selenomonas lacticifex sp. nov., Zymophilus raffinosivorans gen. nov., sp. nov., and Zymophilus paucivorans sp. nov. Int. J. Syst. Bacteriol. 40:19-27. Scott, D.T., D.M. McKnight, E.L. Blunt-Harris, S.E. Kolesar, and D.R. Lovley. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32:2984-2989. Shelobolina, E.S., K.P. Nevin, J.D. Blakeney-Hayward, C.V. Johnsen, T.W. Plaia, P. Krader, T. Woodard, D.E. Holmes, C.G. Vanpraagh, and D.R. Lovley. 2007. Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Int. J. Syst. Evol. Microbiol. 57:126-135. Shen, F.T., and C.C. Young. 2005. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 250:221-227. Snoeyenbos-West, O.L., K.P. Nevin, R.T. Anderson, and D.R. Lovley. 2000. Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments. Microb. Ecol. 39:153-167. Strompl, C., B.J. Tindall, G.N. Jarvis, H. Lunsdorf, E.R. Moore, and H. Hippe. 1999. A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49 Pt 4:1861-1872. Strompl, C., B.J. Tindall, H. Lunsdorf, T.Y. Wong, E.R. Moore, and H. Hippe. 2000. Reclassification of Clostridium quercicolum as Dendrosporobacter quercicolus gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 50:101-106. Sung, Y., K.M. Ritalahti, R.A. Sanford, J.W. Urbance, S.J. Flynn, J.M. Tiedje, and F.E. Loffler. 2003. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl. Environ. Microbiol. 69:2964-2974. Thamdrup, B. 2000. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16:41-84. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. Tindall, B.J., R. Rossello-Mora, H.-J. Busse, W. Ludwig, and P. Kampfer. 2010. Notes on the characterization of prokaryote strains for taxonomic purposes. Int. J. Syst. Evol. Microbiol. 60:249-266. Tor, J.M., and D.R. Lovley. 2001. Anaerobic degradation of aromatic compounds coupled to Fe(III) reduction by Ferroglobus placidus. Environ. Microbiol. 3:281-287. Tor, J.M., K. Kashefi, and D.R. Lovley. 2001. Acetate oxidation coupled to Fe(iii) reduction in hyperthermophilic microorganisms. Appl. Environ. Microbiol. 67:1363-1365. Tor, J.M., K.K. Kashefi, D.E. Holmes, and D.R. Lovley. 2003. Potential importance of dissimilatory Fe(III)-reducing microorganism in hot sedimentary environments, In W. S. Wilcock and E. F. De Long, eds. The subseafloor biosphere at mid-ocean ridges. American Geophysical Union, Washington, D.C. Vargas, M., K. Kashefi, E.L. Blunt-Harris, and D.R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65-67. Wallace, D.M. 1987. Large- and small-scale phenol extractions. Methods Enzymol. 152:33-41. Yi, H., K.P. Nevin, B.C. Kim, A.E. Franks, A. Klimes, L.M. Tender, and D.R. Lovley. 2009. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens. Bioelectron. 24:3498-3503.
摘要: 
前人研究顯示 Geobacteraceae 科的菌種具有利用電極作為電子接受者進行厭氧呼吸的能力。為分離能夠作為微生物燃料電池研究且有更高效率發電之異化性鐵還原菌種,因此於實驗室中建立厭氧培養之技術。本研究參考分離甲烷太古生物 (Methanogen) 之方法,利用 Hungate 於 1969 年發表之卷管法 (roll tube method) 以分離鐵還原菌。其中三個分離株 CC-ZLW3-321、CC-ZLW3-322 及 CC-ZLW3-323 是由台南關子嶺溫泉區的天然氣監測井底泥中分離出來。這些分離株特性為有移動性、革蘭氏陰性細胞壁、彎桿狀、大小在 0.4×1.5-6 μm 且具有 1 到 3 根周生鞭毛。分離株能夠利用醋酸作為電子供應者還原檸檬酸鐵來生長。16S rRNA 基因分析顯示這些分離株為 Sporomusa–Pectinatus–Selenomomas 門之菌種,其相似度在 91.8% 以下,這些菌種包含 Dendrosporobacter quercicolus (91.8%) , Anaerosinus glycerini (91.1%) , Pelosinus fermentans (90.9%) and Sporotalea propionica (90.8%)。根據系統演化及生理測試,分離株 CC-ZLW3-321、CC-ZLW3-322 及 CC-ZLW3-323 確定為 Sporomusa–Pectinatus–Selenomomas 新穎性之菌種,可能也是新菌屬,但需要更完整的研究其他化學組成及生理特性才能確立此菌屬之地位。另一個分離株 CC-ZNRSeC-1111 是由竹南紅樹林之底泥樣品所分離出來。此分離株之細胞不具移動性、為革蘭氏陽性細胞壁、稍微彎曲的桿狀、大小在 0.5×6-10 μm ,不具有鞭毛或纖毛。分離株 CC-ZNRSeC-1111 也能夠氧化醋酸還原檸檬酸鐵來生長,根據 16S rRNA 分析顯示此分離株也屬於 Sporomusa–Pectinatus–Selenomomas 門之菌種,最相近之菌種為 Bacillus soli (97.4%)。

Previous studies have suggested that members of the Geobacteraceae can use electrodes as electron acceptors for anaerobic respiration. In order to isolate dissimilatory Fe(III)-reducing bacteria with capability and better efficiency to produce electricity in microbio fuel cell research, an anaerobic technique was began to set up in laboratory. On the basis of the method which used to isolate Methanogen, this research choose roll tube method which was developed by Hungate in 1969 to isolate Fe(III)-reducing bacteria. Three isolates, strain CC-ZLW3-321, CC-ZLW3-322 and CC-ZLW3-323, were derived from a sediment that gathered from monitoring well of natural gas in Guan-Zih-Ling hot spring area in Tainan, Taiwan. The cell of these strain were motile, gram-negative, curved rods, 0.4×1.5-6 μm in size and with one to three peritrichous flagella. Strain CC-ZLW3-321, CC-ZLW3-322 and CC-ZLW3-323 were capable of reducing Fe(III)-citrate in the presence of acetate. 16S rRNA gene sequence analysis demonstrated that these isolates is unique, showing less the 91.8% similarity to bacteria of the Sporomusa-Pectinatus-Selenomomas phyletic group, including Dendrosporobacter quercicolus (91.8%), Anaerosinus glycerini (91.1%), Pelosinus fermentans (90.9%) and Sporotalea propionica (90.8%). On the basis of phylogenetic analysis and physiological test, strain ZLW3-321, ZLW3-322, ZLW3-323 is proposed to represent a novel species, probably a novel genus in the Sporomusa-Pectinatus-Selenomomas phyletic group. But still need more research to complete the characteristic of this genus. Another isolate, strain CC-ZNRSeC-1111, was derived from the sediment of an estuary in Jhu-Nan, Taiwan. The cell of this strain was none-motile, gram-positve, slightly curved rods, 0.5×6-10 μm in size and no flagella or pili was found. Strain CC-ZNRSeC-1111 was capable of reducing Fe(III)-citrate in the presence of acetate. According to 16S rRNA gene sequence analysis, bacteria which has the closest similarity is Bacillus soli (97.4%) in the Sporomusa-Pectinatus-Selenomomas phyletic group.
URI: http://hdl.handle.net/11455/28278
其他識別: U0005-2207201015282800
Appears in Collections:土壤環境科學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.