Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28281
標題: 探討浸水環境下添加黑炭對於汙染土壤重金屬移動性之影響
Effects of black carbon on the mobility, availability and speciation of heavy metals in polluted soils under flooding condition
作者: 徐聖惠
Hsu, Sheng-Huei
關鍵字: flooding;浸水;soil;heavy metal;black carbon;availability;sequential extraction;土壤;重金屬;黑炭;有效性;連續萃取
出版社: 土壤環境科學系所
引用: 行政院環境保護署。1994。土壤中陽離子交換容量-醋酸氨法 (NIEA S201.60T) 行政院環境保護署。2003。土壤中重金屬檢測方法-王水消化法 (NIEA 21.63B) 陳尊賢。2003。台灣土壤及地下水環境保護協會簡訊。第九期,p.2-p.10。 Ahnstrom, Z. S., and D. R. Parcker. 1999. Development and assessment of a sequential extraction procedure for the fractionation of soil cadmium. Soil Sci. Soc. Am. J. 63:1650-1658. Alloway, B. J. 1995. Heavy metal in soils, 2nd ed. Blackie Academic and Professional, Glasgow, UK. Alomary, A. A., and S. Belhadj. 2006. Determination of heavy metals (Cd, Cr, Cu, Fe, Ni, Pb, Zn) by ICP-OES and their speciation in Algerian Mediterranean Sea sediments after a five-stage sequential extraction procedure. Environ. Monit. Assess. 135:265–280. Antonaidis, V., and B. J. Alloway. 2002. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ. Pollut. 117:515-521. Ashworth, D. J., and B. J. Alloway. 2008. Influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils. Commun. Soil Sci. Plant Anal. 39:538-550. Ashworth, D. J., and B. J. Alloway. 2004. Soil mobility of sewage sludge-derived dissolved organic matter, copper, nickel and zinc. Environ. Pollut. 127:137-144. Basar, H. 2009. Methods for estimating phytoavailable metals in soils. Commun. Soil Sci. Plant Anal. 40:1087-1105. Bjerre, G. K., and H. H. Schierup. 1985. Influence of waterlogging on availability and uptake of heavy metals by grown in different soils. Plant and Soil. 88:45-56. Bohn, H. L., B. L. Mcneal, and G. A. O’Connor. 1985. Soil Chemistry. Second edition. Canada. A Wiley-Interscience. Bolan, N. S., D. C. Adriano, R. Natesan, and B. J. Koo. 2003. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J. Environ. Qual. 32:120-128. Chen, J., D. Zhu., and C. Sun. 2007. Effect of heavy metals on the sorption of hydrophobic organic compounds to wood charcoal. Environ. Sci. Technol. 41:2536-2541. Chun, Y., G. Sheng, and C. T. Chiou. 2004. Evaluation of current techniques for isolation of chars as natural adsorbents. Environ. Sci. Technol. 38:4227-4232. Demirbas, A., E. Pehlivan, F. Gode, T. Altun, and G. Arslan. 2005. Adsorption of Cu(II), Ni(II), Pb(II) and Cd(II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interface Sci. 282:20-25. Faulkner, S. P., W. H. Patrick, Jr., and R. P. Gambrell. 1989. Field techniques for measuring soil parameters. Soil Sci. Soc. Am. J. 53:833-890. Fengxiang, H., and A. Banin. 1996. Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils incubated: I. under saturated conditions. Water Air Soil Pollut. 95:399-423. Gao, S., K. K. Tanji, S. C. Scardaci, and A. T. Chow. 2002. Comparison of redox indicators in a paddy soil during rice-growing season. Soil Sci. Soc. Am. J. 66:805-817. Gardner, W. H. 1986. Water content. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph. 9:493-544. Gee, G. W., and J. W. Bauder. 1986. Partical-size analysis. p. 383-412. In: A. Klute et al. (eds.). Methods of soil analysis. Part 1. Physical and mineralogical method. Second edition. Madison, WI, USA, Agronomy Monograph 9. Grybos, M., M. Davranche, G. Grruau, and P. Petitjean. 2007. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? J. Hazard. Mater. 314:490-501. Haldar, M., and L. N. Mandal. 1979. Influence of soil moisture regimes and organic matter application on the extractable Zn and Cu content in rice soils. Plant and Soil. 53:203-213. Hsu, N. H., S. L. Wang, Y. C. Lin, G. D. Sheng, and J. F. Lee. 2009. Reduction of Cr(VI) by crop-residue-derived black carbon. Environ. Sci. Technol.43:8801-8806. Hua, L., W. wu, Y. Liu, M. B. Mcbride, and Y. Chen. 2009. Reduction of nitrogen loss and Cu and Zn mobility during sludge composting with bamboo charcoal amendment. Environ. Sci. Pollut. Res. 16:1-9. Iu, K. L., I. D. Pulford, and J. Duncan. 1981. Influence oh waterlogging and lime or organic matter additions on the distribution of trace metals in an acid soil: II. Zinc and copper. Plant and Soil. 59:327-333. Jing, J., and T. J. Logan. 1992. Effects of sewage sludge concentration on chemical extractability and plant uptake. J. Environ. Qual. 21:73-81. Kashem, M. A., and B. R. Singh. 2001. Metal availability in contaminated soils: I. effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems. 61:247-255. Kashem, M. A., and B. R. Singh. 2004. Transformations in solid phase species of metals as affected by flooding and organic matter. Commun. Soil Sci. Plant Anal. 35:1435-1456. Kelderman, P., and A. A. Osman. 2007. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Res. 41:4251-4261. Kocaoba, S. 2007. Comparison of Amberlite IR-120 and dolomite’s performances for removal of heavy metals. J. Hazard. Mater. 147:488-496. Lacour, S., J. C. Bollinger, B. Serpaud, P. Chantron, and R. Arcos. 2001. Removal of heavy metals in industrial wastewater by ion-exchanger grafted textiles. Anal. Chim. Acta. 428:121-132. Lacour, S., B. Serpaud, and J. C. Bollinger. 2004. Performance of ion-exchanger grafted textiles for industrial water treatment in dynamic reactors. Water Res. 38:4045-4054. Lair, G. J., M. Graf, F. Zehetner, and M. H. Gerzabek. 2008. Distribution of cadmium among geochemical fractions in floodplain soils of progressing development. Environ. Pollut. 156:207-214. Lee, D. Y. and H. C. Zheng. 1994. Simultaneous extraction of soil phytoavailable cadmium, copper, and lead by chelating resin membrane. Plant and Soil. 164:19-23. Lee, D. Y., J. C. Huang, K. W. Juang, and L. Tsui. 2005. Assessment of phytotoxicity of chromium on flooded soils using embedded selective ion exchange resin method. Plant and Soil. 277:97-105. Lee, D. Y., P. H. Chiang, and K. H. Houng. 1996. Determination of bioavailable cadmium in paddy fields by chelating resin membrane embedded in soils. Plant and Soil. 181:233-239. Lee, D. Y., Y. N. Shih, H. C. Zheng, C. P. Chen, K. W. Juang, J. F. Lee, and L. Tsui. 2006. Using the selective ion exchange resin extraction and XANES methods to evaluate the effect of compost amendments on soil chromium(VI) phytotoxicity. Plant and Soil. 281:87-96. Lee, I. H., Y. C. Kuan, and J. M. Chern. 2006. Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. J. Hazard. Mater. B138:549-559. Lee, I. H., Y. C. Kuan, and J. M. Chern. 2007. Equilibrium and kinetics of heavy metal ion exchange. Journal of the Chinese Institute of Chemical Engineers. 38:71-84. Liang, B., J. Lehmann, D. Colomon, J. Kinyangi, J. Grossman, B. O’Neill, J. O. Skjemstad, J. Thies, F. J. Luizao, J. Petersen, and E. G. Neves. 2006. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70:1719-1730. Light, S. T. 1972. Standard solution for redox potential measurements. Anal. Chem. 44:1038-1039. Lin, L. C., and R. S. Juang. 2007. Ion-exchange kinetics of Cu(II) and Zn(II) from aqueous solution with two chelating resins. Chem. Eng. J. 132:205-213. Lopez, M., I. Gonzalez, and A. Romero. 2008. Trace elements contaminated of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, Sw Spain). Environ. Geol. 54:805-818. Major, J., J. Lehmann, M. Rondon, and C. Goodale. 2010. Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology. 16:1366–1379. Ma, L. Q., and Y. Dong. 2004. Effects of incubation on solubility and mobility of trace metals in two contaminated soils. Environ. Pollut. 130:301-307. Martinez, C. E., and H. L. Motto. 2000. Solubility of lead, zinc and copper added to mineral soils. Environ. Pollut. 107:153-158. Nehrenheim, E., and J. P. Gustafson. 2008. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments. Bioresour. Technol. 99:1571-1577. Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon, and organic matter. p.961-1010. In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johnston, and M. E. Sumner (ed.) Methods of soil analysis, Part 3. ASA and SSSA, Madison, WI, USA. Osztoics, E., P. Csatho, T. Nemeth, G. Baczo, M. Magyar, and L. Radimszky. 2005. Influence of phosphate fertilizer sources and soil properties on trace element concentrations of red clover. Commun. Soil Sci. Plant Anal. 36: 557–570. Patrick, W. H., Jr. and I. C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20: 323-359. Qin, F., B. Wen, X. Q. Shan, Y. N. Xie, T. Liu, S. Z. Zhang, and S. U. Khan. Mechanisms of competitive adsorption of Pb, Cu, and Cd on peat. 2006. Environ. Pollut. 144:669-680. Rosa, J. M. D. L., H. Knicker, E. L. Capel, D. A. C. Manning, J. A. G. Perez, and F. J. G. Vila. 2007. Direct detection of black carbon in soils by Py-GC/MS, carbon-13 NMR spectroscopy and thermogravimetric techniques. Soil Sci. Soc. Am. J. 72:258-267. Reynolds, J. G., D. V. Naylor, and S. E. Fendorf. 1999. Arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Sci. Soc. Am. J. 63:1149-1156. Schmidt, M. W. I., and A. G. Noack. 2000. Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles. 14:777-793. Shrestha, R., R. Fischer, and M. Sillanpaa. 2007. Investigations on different positions of electrodes and their effects on the distribution of Cr at the water sediment interface. Int. J. Environ. Sci. Tech. 4:413-420. Simpson, S. L., S. C. Apte, and G. E. Batley. 1998. Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environ. Sci. Technol. 32:620-625. Singh, B., B. J. Alloway, and F. J. M. Bochereau. 2000. Cadmium sorption behavior of natural and synthesis zeolites. Commun. Soil Sci. Plant Anal. 31: 2775-2786. Strelko, V. Jr., D. J. Malik, and M. Streat. 2002. Characterisation of the surface of oxidised carbon adsorbents. Carbon. 40:95-104. Sud, D., G. Mahajan, and M. P. Kaur. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions aqueous solutions – A review. Bioresour. Technol. 99:6017-6027. Tanji, K. K., S. Gao, S. C. Scardaci, and A. T. Chow. 2003. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma. 114:333-353. Tessier, A. P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-851. Thakur, S. K., N. K. Tomar, and S. B. Pandeya. 2006. Influence of phosphate on cadmium sorption by calcium carbonate. Geoderma. 130:240-249. Tokunaga, T. K., J. Wan, M. K. Firestone, T. C. Hazen, K. R. Olsen, D. J. Herman, S. R. Sutton, and A. Lanzirotti. 2003. In situ reduction of chromium (VI) in heavily contaminated soils through organic carbon amendment. Bioremediation and Biodegradation. 32:1641-1649. Yang, J. E., E. O. Skogley, S. J. Georgitis, B. E. Schaff, and A. H. Ferguson. 1991. Phytoavailability soil test: development and verification of theory. Soil Sci. Soc. Am. J. 55:1358-1365. Yang, Z., Y. Wang, Z. Shen, J. Niu, and Z. Tang. 2009. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 166:1186-1194. Yoshida, S., and A. Tanaka. 1969. Zinc deficiency of the rice plant in calcareous soils. Soil Sci. Plant Nutr. 15:75-80. Yin, Y., C. A. Impellitteri, S. J. You, and H. E. Allen. 2002. The importance of organic matter distribution and extract soil: solution ration on the desorption of heavy metals from soils. Sci. Total. Environ. 287:107–119. Yu, P. F., K. W. Juang, and D. Y. Lee. 2004. Assessment of phytotoxicity of chromium in soils using the selective ion exchange extraction method. Plant and Soil 258:333-340.
摘要: 
Heavy metal pollution in soils is an important problem during recent decades. Heavy metal is harmful to ecosystem through the uptaking of plants in agricultural soils polluted by heavy metals. The mobility of heavy metal is affected by the changing of soil condition such as pH and Eh. Black carbon (B.C.), derived from crop residues, improves the fertility on soils, increases surface area, and cation exchangeable capacity, and decreases the mobility of heavy metal in soils. In this experiments, black carbon mixed with two soils polluted by heavy metal from Changhua in Taiwan with the ratio of 0%, 0.5%, 1%, and 5% Black carbon under flooding condition to investigate the behavior of heavy metal in soils during flooding period. The results showed that soil became more anoxic with the increasing amount of black carbon added to the soils. With an increasing black carbon content, the concentrations of Cd, Ni, Zn, and Cu released into the soil solutions were reduced, due to the presences of black carbon. In the results of sequential extraction, the fraction of Fe-Mn oxides bounded decreased and transferred to other fractions. For example, the fraction of Fe-Mn oxides transferred to exchangeable for Cd, the fraction of Fe-Mn oxides transferred to the fraction of carbonate bounded in CHB soil and to the fraction of carbonate bounded and organic matter bounded in CHC for Ni, the fraction of Fe-Mn oxides transferred to the fraction of carbonate bounded for Zn. In addition, with the amount of black carbon increasingly, the fraction of organic matter bounded raised for Cu. After flooding, the residual fraction of heavy metals increased. It shows that adding black carbon in soils cause the decreases in the concentration of heavy metals in soil solution and the redistribution of heavy metals in soils.

土壤中重金屬汙染的現象於近年來日益嚴重,受到重金屬汙染的農地土壤中,透過植物對於重金屬的吸收利用則會對生態造成危害,而重金屬在土壤中的有效性與移動性會受到環境條件的影響,如pH及Eh值的改變。於台灣農地土壤中常有將農業廢棄物現地焚燒的現象,燃燒農業廢棄物產生的黑炭置於土壤中可以增進地力,而其因有高比表面積、不易分解及高陽離子交換容量等特性,對於土壤中的汙染物也具有吸附能力。本研究利用台灣彰化縣兩處受到重金屬汙染的土壤,利用浸水孵育的方式模擬水田土壤,分別於土壤中添加0%、0.5%、1%及5%的黑炭,探討浸水還原的環境中,黑炭的添加對於土壤中重金屬移動性與有效性的影響。
實驗結果顯示,土壤在浸水的環境中,溶液中的pH值提高、還原電位下降、鐵、錳離子濃度也隨之上升,且隨著黑炭添加比例的提高而土壤愈還原。在重金屬的濃度及型態分佈上,發現隨著黑炭添加的比例提高,溶液中鎘、鎳、鋅及銅的濃度隨之下降,有效性重金屬的含量也略為下降,表示黑炭於土壤中可作為一吸附劑以降低溶液中重金屬濃度及促成土壤中重金屬的型態重新分佈。於連續萃取的結果中,隨著土壤逐漸的還原,鐵錳氧化物的還原溶解會使鐵錳氧化物結合態中有所減少,而重金屬則可轉移至其他型態中,如鎘會由鐵錳氧化物轉移至交換態中、鎳於CHB土壤中會由鐵錳氧化物結合態轉移至碳酸鹽結合態,於CHC土壤中則會轉移至碳酸鹽結合態及有機質結合態;鋅則會由鐵錳氧化物結合態轉移至碳酸鹽結合態中;銅則隨著黑炭添加比例的提高,有機質結合態比例明顯的上升,而各種重金屬在浸水孵育後均增加其殘留態的含量。研究結果顯示,添加黑炭於土壤中會造成重金屬於溶液中的濃度減少,植物有效性的重金屬含量較為下降,也對於重金屬的型態分佈造成影響。
URI: http://hdl.handle.net/11455/28281
其他識別: U0005-2207201016461100
Appears in Collections:土壤環境科學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.