Please use this identifier to cite or link to this item:
標題: 以黏粒修飾電極法對甲基藍電化學特性之研究
Electroanalysis of Methylene Blue Using Clay-modified Electrode Method
作者: 何任于
Ho, Ren-Yu
關鍵字: clay minerals;黏土礦物;methylene blue;electroanalysis;甲基藍;電化學分析
出版社: 土壤環境科學系所
引用: 林良平。1987。土壤微生物學上冊。初版。台北市:南山堂。pp. 17-69。 徐振騰。2006。拋棄式電化學感測器之研發與應用。國立中興大學化學系碩士論文。 陳鴻基、李國欽、莊作權。1995。利用粘粒修飾電極探討巴拉刈在粘土礦物膜層中的移動性。中華民國雜草學會會刊16:1-13。 陳鴻基、曾志明。2003a。銅錳離子的競爭吸附對巴拉刈在黏粒膜層中移動性的影響。興大農林學報52:1-19。 陳鴻基、曾志明。2003b。銅錳離子的吸附對巴拉刈在黏粒膜層中電化學活性的影響。中華農學會報4:429-446。 陳鴻基、楊庭豪、曾志明。2003。利用方波伏安法探討不同離子對巴拉刈在土壤中移動的影響。興大農林學報52:19-31。 郭魁士。1978。土壤學。第二版。台北市:之宜。pp. 127-164。 施育仁、黃紀嚴。2002。水熱法促進絹雲母離子交換及增加表面積之研究。材料年會論文宣讀。 楊秋忠。2004。土壤與肥料。第八版。台中市:農世公司。pp. 396-412。 楊庭豪、陳鴻基、曾志明。2003。利用網版印刷碳電極探討巴拉刈在黏土礦物表面上的鍵結。土壤與環境6:193-206。 楊庭豪。2005。利用化學修飾電極法探討不同離子及堆肥對巴拉刈在土壤中移動性的影響。國立中興大學土壤環境科學系碩士論文。 鄭世堃、陳鴻基、曾志明。2007。以電化學方法探討烷基銨插層膨潤石類之表面電荷特性。中華農學會報8:336-354。 鄭世堃。2007。黏土礦物層面電荷特性之電化學分析。國立中興大學土壤環境科學系碩士論文。 臨床毒物科。2001,解毒劑如何使用。行政院衛生署全國解毒劑儲備網。 Ahammad, A.J.S., S. Sarker, M.A. Rahman, and J.J. Lee. 2010. Simultaneous determination of hydroquinone and catechol at an activated glassy carbon electrode. Electroanalysis. 22: 94-700. Ahmet, R., and G. Lagaly. 2001. Baseline studies of the clay minerals society source clays: Layer-charge determination and characteristics of those minerals containing 2:1 layers. Clays Clay Miner. 49: 393-397. Allen, S.J., and B. Koumanova. 2005. Decolourisation of water/wastewater using adsorption (review). Journal of the University of Chemical Technology and Metallurgy. 40: 175-192. Ams, D.A., J.B. Fein, H. Dong, and P.A. Maurice. 2004. Experimental measurements of the adsorption of Bacillus subtilis and Pseudomonas mendocina onto Fe-oxyhydroxide- coated and uncoated quartz grains. Geomicrobiol. J. 21: 511-519. Audebert, P., and C. Sanchez. 1994. Modified electrodes from hydrophobic alkoxide silica gels -insertion of electroactive compounds and glucose oxidase, J. Sol-Gel. Sci. Tech. 2: 809-812. Aziz, M.A., T, Selvaraju, and H. Yang. 2007. Selective determination of catechol in the presence of hydroquinone at bare indium tin oxide electrodes via peak-potential separation and redox cycling by hydrazine. Electroanalysis. 19: 1543-1546. Baeumner A.J. 2003. Biosensors for environmental pollutants and food contaminants. Anal. Bioanal. Chem. 377: 434-445. Bard, A.J., and L.R. Faulkner. 2001. Electrochemical methods. 2nd ed. New York: John Wiley & Sons. pp. 226-260. Bocarsly, A.B., E.G. Walton, and M.S. Wrighton. 1980. Use of chemically derivatized n-type silicon photoelectrodes in aqueous media. Photooxidation of iodide, hexacyanoiron(II), and hexaammineruthenium(II) at ferrocene-derivatized photoanodes. J. Am. Chem. Soc. 102: 3390-3398. Bolts, J.M., and M.S. Wrighton. 1978. Chemically derivatized n-type semiconducting germanium photoelectrodes. persistent attachment and photoelectrochemical activity of ferrocene derivatives. J. Am. Chem. Soc. 100: 5257-5262. Bozdogan, A., and H. Goknil. 1987. The removal of the color of textile dyes in wastewater by the use of recycled coagulant. MU Fen. Billimeri. Dergisi. Sayi. 4: 83-86. Brower, G.R., and G.D. Reed. 1986. Economical pretreatment for color removal from textile dye wastes. In “Proceedings of the 41st Industrial Waste Conference, Purdue University”, ed. J.M. Bell, pp. 612-616. West Lafayette, Indiana: School of Civil Engineering. Bujdak, J., J. Jurečekova, H. Bujdakova, K. Lang, and F. šeršeň. 2009. Clay mineral particles as efficient carriers of methylene blue used for atimicrobial treatment. Environ. Sci. Technol. 43: 6202-6207. Butruille, J.R., and T.J. Pinnavaia. Propene alkylation of liquid phase biphenyl catalyzed by alumina pillared clay catalysts. 1992. Catalysis Today. 14: 141-154. Chenu, C., and G. Stotzky. 2002. Interactions between microorganisms and soil particles: A overview. In “Interactions Between Soil Particles and Microorganisms”, eds. P. M. Huang, J. M. Bollag and N. Senesi, pp. 3-40. New York : John Wiley & Sons, Inc. Courvoisier, E., and S. Dukan. 2009. Improvement of Escherichia coli growth by kaolinite. Appl. Clay Sci. 44: 67-70. Cui, H., C. He, and G. Zhao. 1999. Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J. Chromatogr. A. 855: 171-179. Falaras, P., and F. Lezou. 1998. Electrochemical behavior of acid activated montmorillonite modified electrodes. J. electroanal. chem. 455:169-179. Fitch, A. 1990. Clay modified electrodes : a review. Clay and Clay Miner. 38: 391-400. Fitch, A. 1995. Applicstion of electrochemistry to the study of transport phenomena in layered clays. Nanoporous Materials. pp. 93-110. Fitch, A., J. Du, H. Gan, and J.W. Stucki. 1995. Effect of clay charge on swelling: A clay-modified electrode study. Clays and Clay Miner. 43: 607-614. Fitch, A., J. Song, and J. Stein. 1996. Molecular structure effects on diffusion of cations in clays. Clays and Clay Miner. 44: 370-380. Fitch, A., R.J. Krzysik. 1994. Multisweep cyclic voltammetric studies on the effect of charge on diffusion and sorption processes of ML3n+ chelates at clay-modified electrodes. J. Electroanal. Chem. 379: 129-134. Fomina, M. and G.M. Gadd. 2002. Influence of clay minerals on the morphology of fungal pellets. Mycol. Res. 106: 107-117. Forano, C., and V. Prevot. 2008. Enzyme-based Bioinorganic Materials. In”Bio-inorganic hybrid nanomaterials strategies, syntheses, characterization and applications”, eds. Ruiz-Hitzky, E., K. Ariga, and Y. Lvov. pp. 443-483. Germany:Wiley–VCH. Forano, C., S. Vial, and C. Mousty. 2006. Nanohybrid enzymes - layered double hydroxides: potential applications. Curr. NanoSci. 2: 283-294. Garg, V.K., M. Amita, R.Kumar, and R. Gupta. 2004. Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: a timber industry waste. Dyes and Pigments. 63: 243-250. Ghosh, D. and K.G. Bhattacharyya. 2002. Adsorption of methylene blue on kaolinite. Appl. Clay Sci. 20: 295-300. Ghosh, P.K., and A.J. Bard. 1983. Clay-modified electrodes. J. Am. Chem. Soc. 105: 5691-5693. Gianfreda, L., M.A. Rao, F. Sannino, F. Saccomandi, and A. Violante. 2002. Enzymes in soil: properties, behavior and potential applications. Dev. Soil Sci. 28: 301–327. Gobi, V.K., and R. Ramaraj. 1992. Photoelectrocatalytic reduction of oxygen at chemically modified electrodes using ruthenium(II) and cobalt(III) complexes. J. Chem. Soc. Chem. Commun. 19: 1436-1437. Gurses, A., C. Doğar, M. Yalcın, M. Acıkyıldız, R. Bayrak, and S. Karaca. 2006. The adsorption kinetics of the cationic dye, methylene blue, onto clay. J. Hazard. Mater. 131: 217-228. Gurses, A., S. Karaca, C. Doğar, R. Bayrak, M. Acıkyıldız, and M. Yalcın. 2004. Determination of adsorptive properties of clay/water system: methylene blue sorption. J. Colloid Interf. Sci. 269: 310-314. Han, S.B., M. Zhu, Z.B. Yuan, and X. Li. 2001. A methylene blue-mediated enzyme electrode for the determination of trace mercury(II), mercury(I), methylmercury, and mercury–glutathione complex. Biosens. Bioelectron. 16: 9-16. Hernandez, L., P. Hernandez, M.H. Blanco, E. Lorenzo, and E. Alda. 1988. Determination of flunitrazepam by differential-pulse voltammetry using a bentonite-modified carbon paste electrode. Analyst. 113: 1719-1722. Hernandez, L., P. Hernandez, and E. Lorenzo. 1990. Direct determination of bentazepam in a biological sample with a sepiolite-modified carbon paste electrode. Electroanalysis. 2: 643-646. Jaynes, W.F., and J.M. Bigham. 1986. Multiple cation-exchange capacity measurements on standard clays using a commercial mechanical extractor. Clays Clay Miner. 34: 93-98. Jaynes, W.F., and J.M. Bigham. 1987. Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites. Clays Clay Miner. 35: 440-448. Jaynes, W.F., and S.A. Boyd. 1991. Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J. 55: 43-48. Joo, P. 1990. Electrochemistry of dye- and surfactant-incorporated montmorillonite-modified electrodes. Colloids and Surfaces. 49: 29-39. Joo, P., and A. Fitch. 1996. Ionic and molecular transport in hydrophobized montmorillonite films: An electrochemical survey. Environ. Sci. Technol. 30: 2681-2686. Joo, P., A. Fitch, and S.H. Park. 1997. Transport in hydrophobized montmorillonite thin films. Environ. Sci. Technol. 31: 2186-2192. Ju, H.X., Y.A. Xun, and H.Y. Chen. 1995. Heterogeneous catalytic reaction at a methylene blue/NafionR modified carbon fiber microcylinder electrode. J. Electroanal. Chem. 380: 283-285. Khoo, S.B., and F. Chen. 2002. Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Anal. Chem. 74: 5734-5741. King,R.D., D.G. Nocera, and T.J. Pinnavaia. 1987. On the nature of electroactive sites in clay-modified electrodes. J. Electroanal.Chem. 236: 43-53. Kacha, S., Z. Derriche, and S. Elmaleh. 2003. Equilibrium and kinetics of color removal from dye solutions with bentonite and polyaluminum hydroxide. Water Environment Research. 75: 15-20. Kannan, N., and M.M. Sundaram. 2001. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes and Pigments. 51: 25-40. Koo, S.B., and F. Chen. 2002. Studies of sol−gel ceramic film incorporating methylene blue onglassy carbon an electrocatalytic system for the simultaneous determination of ascorbic and uric acids. Anal. Chem. 74: 5734-5741. Kumada, K., and Kato, H., 1970. Browning of pyrogallol as affected by clay minerals, I. Classification of clay minerals based on their catalytic effects on the browning reaction of pyrogallol. Soil Sci. Plant Nutr. 16: 195-200. Kumar, A.S., S. Sornambikai, P. Gayathri, J.M. Zen. 2010. Selective covalent immobilization of catechol on activated carbon electrodes. Journal of Electroanalytical Chemistry. 641:131-135. Lagaly, G., M.F. Gonzalez, and A. Weiss. 1976. Problems in layer charge determination of montmorillonite. Clay Miner. 11: 173-187. Lagaly, G. 1979. The “layer charge” of regular interstratified 2:1 clay minerals. Clays Clay Miner. 27: 1-10. Lagaly, G. 1981. Characterization of clays by organic compounds. Clay Miner. 16: 1-21. Lagaly, G. 1982. Layer charge heterogeneity in vermiculites. Clays Clay Miner. 30: 215-222. Lagaly, G. 1986. Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22: 43-51. Lavie, S. and G. Stotzky. 1986. Adhesion of the clay minerals montmorillonite, kaolinite and attapulgite reduce of Histoplasma capsulatum. Appl. Environ. Microbiol. 51 : 65-73. Lee, D., M. Foux, and E.F. Leonard. 1997. The effects of methylene blue and oxygen concentration on the photoinactivation of Q beta bacteriophage. Photochem. Photobiol. 65: 161-165. Letaief, S., P. Aranda and E. Ruiz-Hitzky. 2005. Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Appl. Clay Sci. 28: 183-198. Liu, Z.J., B.H. Liu, J.L. Kong, and J.Q. Deng. 2000. Probing Trace Phenols based on mediator-free alumina sol−gel-derived tyrosinase biosensor. Anal. Chem. 72: 4707-4712. Macha, S.M., and A. Fitch. 1998. Clay as architectural units at modified-electrodes. Mikrochim. Acta. 128: 1-18. Madejova, J. 2003. FTIR techniques in clay mineral studies. Vibrational Spectroscopy 31: 1-10. Malla, P.B. 2002. Vermiculite. In “Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7”, eds J.B. Dixon and D.G. Schulze, pp. 501-529. Madison, WI, USA: Soil Science Society of America, Inc. Majewska, N., T. Winnicki, and J. Wiśniewski. 1989. Effect of flow conditions on ultrafiltration efficiency of dye solutions and textile effluents. Desalination. 71: 127-135. Manceau, A., B. Lanson, V.A. Drits, D. Chateigner, W.P. Gates, J. Wu, D. Huo, and J.W. Stucki. 2000. Oxidation-reduction mechanism of iron in dioctahedral smectites: I. crystal chemistry of oxidized reference nontronites. Amer. Miner. 85: 133-152. Martin, J.P., and K.Haider. 1980. Microbial degradation and stabilization of 14C-labeled lignins, phenols, and phenolic polymers in relation to soil humus formation. Lignin biodegradation: Microbiology, chemistry and potential applications. 1: 77-100. Mills, A. and J. Wang. 1999. Photobleaching of methylene blue sensitised by TiO2: an ambiguous system. Journal of Photochemistry and Photobiology A: Chemistry. 127: 123-134. Morlat-Therias. S., C. Mousty, P. Palvadeau, P. Molinie, P. Leone, J. Rouxel, C. Taviot-Gueho, A. Ennaqui, A. de Roy, and J.P. Besse. 1999. Concomitant intercalation and decomplexation of ferrocene sulfonates in layered double hydroxides. J. Solid State Chem. 144: 143–151. Mousty, C. 2004. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 27: 159-177. Mousty, C., C. Forano, S. Fleutot, and J.-C. Dupin. 2009. Electrochemical study of anionic ferrocene derivatives intercalated in layered double hydroxides: application to glucose amperometric biosensor. Electroanalysis. 21: 399-408. Mousty, C., S. Therias, C. Forano, and J.-P. Besse. 1994. Anion-exchanging clay-modified electrodes: synthetic layered double hydroxides intercalated with electroactive organic anions. J. Electroanal. Chem. 374: 63-69. Murray, R.W., 1992. Introduction to the chemistry of molecularly designed electrode surfaces. In “Molecular Design of Electrode Surfaces, Techniques of Chemistry, vol. 22”, ed. R.W. Muray, pp. 1-48. New York: John Wiley & Sons. Inc. Murry, H.H. 1999. Applied clay mineralogy today and tomorrow. Clay Minerals. 34: 39-49. Murry, H.H. 2000. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science. 17: 207-221. Nagaraja, P., R.A. Vasantha, K.R. Sunitha. 2001. A new sensitive and selective spectrophotometric method for the determination of catechol derivatives and its pharmaceutical preparations. J. Pharm. Biomed. Anal. 25: 417-424. Narita, E., P.D. Kaviratna, and T.J. Pinnavaia. 1993. Direct synthesis of a polyoxometallate-pillared layered double hydroxide by coprecipitation. J. Chem. Soc. Chem. Commun. 1: 60-62. Navratilova, Z., and P. Kula. 2003. Clay modified electrodes: present application and prospects. Electroanalysis. 15: 837-846. Newman, A.C.D., and G. Brown. 1987. The chemical constitution of clays. Monograph, Mineralogical Society. 6: 1-128. Overcash, M.R., A.L. McPeters, E.J. Dougherty, and R.G. Carbonell. 1991. Diffusion of 2,3,7,8-tetrachlorodibenzo-p-dioxin in soil containing organic solvents. Environ. Sci. Technol. 25: 1479-1485. Ozin, G.A., A. Kuperman, and A. Stein. 1989. Advanced zeolite, materials science. Angew. Chem. Int. Ed. Engl. 28: 359-376. Pecorari, M., and P. Bianco. 1998. Ion-exchange voltammetry of cationic species at membrane clay-modified electrodes. Electroanalysis. 10: 181-186. Petridis, D., P. Falaras, and T. J. Pinnavaia. 1992. Self-assembly of ion-paired electron-transfer centers in a clay-modified electrode. Inorg. Chem. 31: 3530-3533. Pfaffen, V., P.I. Ortiz, S.I. Cordoba de Torresi, and R.M. Torresi. 2010. On the pH dependence of electroactivity of poly(methylene blue) films. Electrochimica Acta. 55: 1766-1771. Pinnavaia, T.J., P.L. Hall, S.S. Cady, and M.M. Mortland. 1974. Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. Phys. Chem.78: 994-999. Probstein, R.F., and R.E. Hicks. 1993. Removal of contaminants from soils by electric fields. Science. 260: 498-503. Qi, H. and C. Zhang 2005. Simultaneous determination of hydroquinone and catechol at a glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis. 17: 832-838. Qiu, J., and G. Villemure. 1995. Anionic clay-modified electrodes: electrochemical activity of nickel (II) sites in layered couble hydroxide films. J. Electroanal. Chem. 395: 159-166. Qiu, J., and G. Villemure. 1997. Anionic clay modified electrodes: electron transfer mediated by electroactive nickel. Cobalt or manganese sites in layered double hydroxides films. J. Electroanal. Chem. 428: 165-172. Rong, D., and T.E. Mallouk. 1993. Chemical gating of a molecular bilayer rectifier at clay-modified electrodes. Inorg. Chem. 32: 1454-1459. Rong, D., Y.I. Kim, and T.E. Mallouk. 1990. Electrochemistry and photoelectrochemistry of pillared-clay-modified electrodes. 29: 1531-1535. Rudzinski, W., and A.J. Bard. 1986. Clay-modified electrodes. 6. Aluminum and silica pillared clay-modified electrodes. J. Electroanal. Chem. 199: 323-331. Salimi, A., L. Miranzadeh, R. Hallaj. 2008. Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives. Talanta. 75: 147-156. Schirmer, R.H., B. Coulibaly, A. Stich, M. Scheiwein, H. Merkle, J. Eubel, K. Becker, H. Becher, O. Muller, T. Zich, W. Schiek, and B. Kouyate. 2003. Methylene blue as an antimalarial agent. Redox Rep. 8: 272-275. Schulze, D.G. 2002. An introduction to soil mineralogy. In “Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7”, eds. J.B. Dixon and D.G. Schulze, pp. 1-35. Madison, WI, USA: Soil Science Society of America, Inc. Shapiro, A.P., and R.F. Probstein. 1993. Removal of contaminants from saturated clay by electroosmosis. Environ. Sci. Technol. 27: 283-291. Shindo, H., and, P.M. Huang. 1985. The catalytic power of inorganic components in the abiotic synthesis of hydroquinone-derived humic polymers. Appl. Clay Sci., 1: 71-81. Singer, A. 2002. Palygorskite and sepiolite. In “Soil Mineralogy with Environmental Applications. SSSA Book Series, no. 7”, eds J.B. Dixon and D.G. Schulze, pp. 555-583. Madison, WI, USA: Soil Science Society of America, Inc. Solomon, D.H. 1968. Clay minerals as electron acceptors and/or electron donors in organic reactions. Clays Clay Miner. 16: 31-39. Solomon, D.H., B.C. Loft, and J.D. Swift. 1968. Reactions catalyzed by minerals. IV. The mechanism of the benzidine blue reaction on silicate minerals. Clay Miner. 7: 389-397. Stein, J.A., and A. Fitch. 1995. Computerized system for dual-electrode multisweep cyclic voltammetry for use in clay-modified electrode studies. Anal. Chem. 67: 1322-1325. Stein, J.A., and A. Fitch. 1996. Effect of clay type on the diffusional properties of a clay-modified electrode. Clays and Clay Miner. 44: 381-392. Stotzky, G. 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses. In “Interactions of Soil Minerals with Natural Organics and Microbes”, eds. P. M. Huang and M. Schnitzer, pp. 305-428. Madison : Soil Sci. Soc. Amer., Inc. Subramanian, P., and A. Fitch. 1992. Diffusional transport of solutes through clay: Use of clay-modified electrodes. Environ. Sci. Technol. 26: 1775-1779. Theng, B.K. G. 1971. Mechanisms of formation of colored clay-organic complexes. A review. Clays Clay Miner. 19: 383-390. Theng, B.K.G., and V.A. Orchard. 1995. Interactions of clays with microorganisms and bacterial survival in soil: A physicochemical perspective. In “Environmental Impact of Soil Component Interactions”, eds. P. M. Huang, J. Berthelin, J. M. Bollag, W. B. McGill and A. L. Page, pp. 123-143. London : Lewis Publishers. Therias, S., B. Lacroix, B. Schollhorn, C. Mousty, and P. Palvadeau. 1998. Electrochemical study of ferrocene and nitroxide derivatives intercalated in Zn-Cr and Zn-Al layered double hydroxides. J. Electroanal. Chem. 454: 91-97. Tonle, I.K., E. Ngameni, and A. Walcarius. 2005. Preconcentration and voltammetric analysis of mercury(II) at a carbon paste electrode modified with natural smectite-type clays grafted with organic chelating groups. Sensors and Actuators B. 110: 195-203. Tonle, I.K., E. Ngameni, H.L. Tcheumi, V. Tchieda, C. Carteret, and A. Walcarius. 2008. Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta. 74: 489-497. Torriero, A.A.J., H.D. Piola, N.A. Martinez, N.V. Panini, J. Raba, J.J. Silber. 2007. Enzymatic oxidation of tert-butylcatechol in the presence of sulfhydryl compounds: Application to the amperometric detection of penicillamine. Talanta. 71: 1198-1204. Tse, D.C.S., and T. Kuwana.1978. Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal. Chem. 50: 1315-1318. Van Olphen, H., and J.J. Fripiat. 1979. Data handbook for clay minerals and other non-metallic minerals. Oxford, England: Pergamon Press. pp. 71-82. Vo-Dinh, T., and B. Cullum. 2000. Biosensors and biochips: advances in biological and medical diagnostics-review. Fresenius J. Anal. Chem. 366: 540-551. Ueda, C., D.C.S. Tse, and T. Kuwana. 1982. Stability of catechol modified carbon electrodes for electrocatalysis of dihydronicotinamide adenine dinucleotide and ascorbic acid. Anal. Chem. 54: 850-856. Wainwright, M. 1996. Non-porphyrin photosensitizers in biomedicine. Chem. Soc. Rev. 25: 351-361. Wainwright, M. 2002. Pathogen inactivation in blood products. Current Med. Chem. 9: 127-143. Wainwright, M., D.A. Phoenix, J. Marland, D.R.A. Wareing, and F.J. Bolton. 1997. A study of photobactericidal activity in the phenothiazinium series. FEMS Immunol. Med. Microbiol. 19: 75-80. Wang, J., J.N. Park, X.Y. Wei, and C.W. Lee. 2003. Room-temperature heterogeneous hydroxylation of phenol with hydrogen peroxide over Fe2+, Co2+ ion-exchanged Naβ zeolite. Chem. Commun. pp. 628-629. Wang, J., and T. Martinez. 1989. Trace analysis at clay-modified carbon paste electrodes. Electroanalysis. 1: 167-172. Wang, J., T. Martinez, D.R. Yaniv, and L.D. McCormick. 1991. Scanning tunneling microscopic investigation of surface fouling of glassy carbon surfaces due to phenol oxidation. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 313: 129-140. Wang, L., P. Huang, J. Bai, H.Wang, L. Zhang, and Y. Zhao. 2007. Direct simultaneous electrochemical determination of hydroquinone and catechol at a poly(glutamic acid) modified glassy carbon electrode. Int. J. Electrochem. Sci. 2: 123-132. Wang, L.H., and Y.P. Kuo. 1999. Simultaneous quantitative determination of resorcinol and 1-Naphthol in haircolor products by high-performance liquid chromatography. Chromatographia. 49: 208-211. Wang, T.S.C., and S.W. Li. 1977. Clay minerals as heterogeneous catalysts in preparation of model humic substances. Z. Pflanzenernaehr. Bodenkd. 140: 669-676. Wang, T.S.C., M.M. Kao, and S.W. Li. 1978a. A new proposed mechanism of formation of soil humic substances. In: Studies and Essays in Commemoration of Golden Jubilee of Academia Sinica. Academia Sinica, Taipei, Taiwan, pp. 357-372. Wang, T.S.C., S.W. Li, and Y.L. Ferng. 1978b. Catalytic polymerization of phenolic compounds by clay minerals. Soil Sci., 126: 81-86. White, R.E. 1987. Introduction to the principles and practices of soil science. 2nd ed. Massachusetts, USA: Blackwell Amer. Pub. Inc. pp. 11-32. Xiang, Y., and G. Villemure. 1992. Electron transport in clay-modified electrodes: study of electron transfer between electrochemically oxidized tris(2,2’ –bipyridyl)iron cations and clay structural iron(II) sites. Can. J. Chem. 70: 1833-1837. Xiang, Y., and G. Villemure. 1995. Electordes modified with synthetic clay minerals: evidence of direct electron transfer from structural iron sites in the clay lattice. J. Electroan. Chem. 381: 21-27. Xiang, Y., and G. Villemure. 1996. Electrodes mofified with synthetic clay minerals: electron transfer between absorbed tris(2,2’ –bipyridyl) metal cations and electroactive cobaltcenters in synthetic smectites. J. Phys. Chem. 100: 7143-7147. Xiao, J., and G. Villemure. 1998. Preparation, characterization and electrochemistry of synthetic copper clays. Clays. Clay Miner. 46: 195-203. Xie, T., Q. Liu, Y. Shi, and Q. Liu. 2006. Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. J. Chromatogr. A. 1109: 317-321. Yao, K., K. Shimazu, M. Nakata, and A. Yamagishi. 1998a. Clay-modified electrodes as studied by the quartz crystal microbalance: adsorption of ruthenium complexes. J. Electroanal. Chem. 442: 235–242. Yao, K., K. Shimazu, M. Nakata, and A. Yamagishi. 1998b. Clay-modified electrodes as studied by the quartz crystal microbalance: redox processes of ruthenium and iron complexes. J. Electroanal. Chem. 443: 253– 261. Yao, K., M. Taniguchi, M. Nakata, K. Shimazu, M. Takahashi, and A. Yamagishi. 1998c. Mass transport on an anionic clay-modified electrode as studied by a quartz crystal microbalance. J. Electroanal. Chem. 457: 119–128. Zen, J.M., and A.S. Kumar. 2004. The prospects of clay mineral electrodes. Anal. Chem. 76: 205A-211A. Zen, J.M., and A.S. Kumar. 2006. Screen-printed electrochemical sensor. In “Encyclopedia of sensors, volumn 9”, eds C.A. Grimes, E.C. Dickey, and M.V. Pishko, pp. 33-52. California: American Scientific Publishers. Zen, J.M., A.S. Kumar, and D.M. Tsai. 2003a. Recent updates of chemically modified electrodes in analytical chemistry. Electroanalysis 15: 1073-1087. Zen, J.M., H.H. Chung, and A.S. Kumar. 2002. Selective detection of ο-diphenols on copper-plated screen-printed electrodes. Anal. Chem. 74: 1202-1206. Zen, J.M., P.Y. Chen, and A.S. Kumar. 2003b. Flow injection analysis of an ultratrace amount of arsenite using a Prussian Blue-modified screen-printed electrode. Anal. Chem. 75: 6017-6022. Zhao, G., M. Li, Z. Hu, H. Li, and T. Cao. 2006. Electrocatalytic redox of hydroquinone by two forms of L-Proline. J. Mol. Catal. A. 255: 86-91. Zhu, L., R.J. Zhao, K. Wang, H.B. Xiang, Z.M. Shang, and W. Sun. 2008. 2008 Electrochemical behaviors of methylene blue on DNA modified electrode and its application to the detection of PCR product from NOS sequence. Sensors. 8: 5649-5660.

Methylene blue was wildly used as a redox indicaor and photosensitizer in analytical chemistry, and that could be a model compound of mobilization and transportation in the environment. We studied electrochemical behavior of methylene blue using the technology of of eletroanalysis coupled with clay-modified electrode, and changed scan rate to study the migration of methylene blue in clay films. The results indicated the redox amounts of methylene blue were apparently affected by scan rate, and the cyclic coltammgrams were also affected by different layer charge of clay minerals. Redox potential shifted to more positive potential when methylene blue coexisted with hydroquinone in the electrolyte, and redox potential also shifted to more positive potential when actinomyces was added to methylene blue solution. Lower peak currents were detected in the methylene blue solution using smectite-modified electrode and higher peak currents were detected using other modified electrodes. The results showed hydroquinone and actinomyces could affect telectrochemical behavior of methylene blue in the clay films and the peak currents of methylene blue were apparently affected by smectite-modified electrodes.
其他識別: U0005-0908201116011200
Appears in Collections:土壤環境科學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.