Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28328
標題: 台灣生技新藥廠商技術效率之研究- 資料包絡法與Malmquist生產力指數之應用
A Study on the Technical Efficiency of Taiwan Biopharmaceutical Firms with Application of DEA and Malmquist Productivity Index
作者: 闕宜萱
Chueh, Yi-Hsuan
關鍵字: biopharmaceutical firms;生技新藥廠商;technical efficiency;two stage DEA;Malmquist productivity index;技術效率;二階段資料包絡分析法;Malmquist生產力指數
出版社: 應用經濟學系所
引用: 一、 中文部分 王肇蘭、許義忠、徐偉初,2008。「台灣地區地方政府效率暨生產 力之評估」,『應用經濟論叢』,84期,71-120。 生技醫療產業策進會,2007。『我國生技醫藥產業環境問題』。取 自http://www.ibmi.org.tw/。 朱兆文,2003。『生技藥品及其學名藥之發展趨勢』。台北:生物 技術開發中心。 朱延智,2007。『高科技產業分析』。台北:五南圖書出版有限公 司。 行政院工業局,2008。『2008生技產業白皮書』。台北:行政院工 業局。 何美玥,2007。『何美玥:生技製藥產業發展條例催生產業升級』。 取自http://tw.stock.yahoo.com/news_content/url/d/a/ 070718/1/ifa5.html。 吳榮燦,2009。「生技新藥條例之後,國內生技產業何去何從?」。 台灣技術經理人協會專題研討。苗栗:香格里拉山莊會議室。4 月25日。 吳濟華、何柏正,2008。「組織效率與生產力評估-資料包絡分析 法」。台北:前程文化事業有限公司。 李逸安,2008。「國際觀光旅館國際化程度對經營效率之影響」。 碩士論文,國立中興大學應用經濟研究所。 林子堯,2003。「台灣綠竹筍農家成本效率之研究」。碩士論文, 國立中興大學應用經濟研究所。 林灼榮、蔡榮德、邱敬貿、康家維,2007。「研發投入與人力資本 對台灣紡織與通訊產業生產效率攸關性之研究」,『東吳經濟 商學學報』。58期,89-120。 林炳文,2002。「臺灣地區商業銀行合併效率性之分析:資料包絡 分析法的應用」,『台灣管理學刊』。1期,341-356。 林恩仕,2000。『生物技術發展歷史、現況及未來』。取自 http://www.ch.vnu.edu.tw/life/簡報/生物技術.pps。 林嘉玲,1998。「台電公司經營績效之研究-DEA之應用」。碩士論 文,國立中興大學企業管理研究所。 邱永和、胡均立、曹嘉麟,2003。「台灣生物科技廠商之成本效率 分析」,『農業與經濟』。31期,55-78。 柯慈儀,2009。「二氧化碳減排對APEC會員國生產力之影響」,第 十屆實證經濟研討會。嘉義:國立中正大學。5月22日。 孫智麗,2003。「我國生物科技人才供需現況分析」,『科技發展 政策報導』。SR9203期,188-196。 孫遜,2004。「資料包絡分析法-理論與應用」。台北:揚智文化 事業有限公司。 張清溪、許嘉棟、劉鶯釧、吳聰敏,1995。「經濟學-理論與實 務」。台北,翰蘆圖書出版有限公司。 張靜文,2004。「專利對農業生物科技廠商生產技術效率及市場價 值之影響」。博士論文,國立台灣大學農業經濟研究所。 陸孔明,2008。「台灣生技新藥產業的前景」,ITIS 2008建構未來 產業研討會。台北:世貿展館。11月4日。 陳麗敏,2003。「基因轉殖動植物生產生技藥品之發展趨勢」。台 北:生物技術開發中心。 黃旭男,1993。「資料包絡分析法使用程序之研究及其在非營利組 織效率評估上之應用」。博士論文,國立交通大學管理科學研 究所。 萬鍾汶、曾冠彰、徐源清,2007。「台灣農業生物科技廠商技術效 率之實證分析」,『臺灣銀行季刊』。58期,141-163。 劉懿真,2002。「生技製藥產業運用專利聯盟之研究」。碩士論 文,國立中央大學產業經濟研究所。 蔡萬春,2004。「台灣農業生物科技廠商之效率分析-以上市上櫃 公司為例」。碩士論文,國立台灣大學農業經濟研究所。 鄭師安,2007。「專利鬆綁學名藥市場競爭白熱化」,『MD News生 技與醫療器材報導』。取自 http://www.bioweb.com.tw/epaper/paper304.htm。 謝尚達、萬鐘汶、陸大榮,2007。「台灣農業生物科技廠商創新效 率之分析」,『農業經濟半年刊』。82期,1-25。 謝青山,1998。「台灣地區傳銷公司經營績效評估-資料包絡分析 法之應用」。碩士論文,國立中山大學企業管理研究所。 二、英文部分 Alam, I. M. S., 2001. “A Nonparametric Approach for Assessing Productivity Dynamics of Large U.S. Banks.” Journal of Money, Credit and Banking. 33: 121-139. Banker, R. D. and R. Morey, 1986. “The Use of Categorical Variables in Data Envelopment Analysis.” Management Science. 32: 1613-1627. Banker, R. D., A. Charnes, and W. W. Cooper, 1984. “Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis.” Management Science. 30: 1078-1092. Bloom, N., R. Griffith, and J. Van Reenen, 2002. “Do R&D Tax Credits Work? Evidence from A Panel of Countries 1979 -1997.” Journal of Public Economics. 85:1-31. Cave, D. W., L. R. Christensen, and W. E. Diewert, 1982. “Multilateral Comparison of Output, Input and Productivity Using Superlative Index Numbers.” Economic Journal. 92: 73-86. Charnes, A., W. W. Cooper, and E. Rhodes, 1978. “Measuring the Efficiency of Decision Making Units.” European Journal of Operational Research. 2: 429-444. Chen, T. Y. and T. L. Yeh, 2000. “A Measurement of Bank Efficiency, Ownership and Productivity Change in Taiwan.” Service Industries Journal. 20: 95-109. DeCarolis, D. M. and D. L. Deeds, 1999. “The Impact of Stocks and Flows of Organization Knowledge on Firm Performance: An Empirical Investigation of the Biotechnology Industry.” Strategic Management Journal. 20: 953-968. Färe, R., S. Grosskopf, B. Lindgren, and P. Roos, 1989. “Productivity Developments in Swedish Hospitals: A Malmquist Output Index Approach.” Department of Economics, Southern Illinois University, Carboondale, Illnois. Färe, R., S. Grosskopf , M. Norris, and Z. Zhang, 1994. “Productivity Growth, Technical Progress and Efficiency Changes in Industrialized Countries.”American Economic Review. 84: 66-83. Farrell, M.J., 1957. “The Measurement of Productivity Efficiency.” Journal of the Royal Statistical Society. Series A, 120: 253-281. Fried, H. O., C. A. K. Lovell, and P. Vanden Eeckaut,1993. “Evaluating the Performance of U.S. Credit Unions.” Journal of Banking and Finance.17:251-265. Fried, H. O., C. A. Lovell, K. S. Schmidt, and S. S. Yaisawarng, 2002.“Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis.” Journal of Productivity Analysis. 17: 157-174. Griffith, R., S. Redding, and J. Van Reenen, 2001. “Cost- Effectiveness of an R & D Tax Credit for the UK.” Fiscal Studies. 22: 375-399. Grosskopf, S. and V. Valdmanis, 1987. “Measuring Hospital Performance:A Nonparametric Approach.” Journal of Health Economics. 6: 89-107. Goto, M. and M. Tsutsui, 1998. “Comparison of Productive and Cost Efficiencies Among Japanese and US Electric Utilities.” International Journal of Management Science. 26: 177-194. Greene, W. H., 1981. Econometric Analysis, New Jersey: Prentice Hall.Hall, L.A. and S. Bagchi-Sen, 2002. “A Study of R&D Intensity, Innovation and Business Performance in the Canadian Biotechnology Industry.” Technovation. 22: 231-244. Linna, M., 1998. “Measuring Hospital Cost Efficiency with Panel Data Models.”Health Economics. 7: 415-427. Pindyck, R. S. and D. L. Rubinfeld, 1998. Econometric Models and Economic Forecasts, Singapore: McGraw- Hill Press. Poter, M. E., 1998a. The Competitive Advantage of Nations: With a New Introduction, The U. S.: Simon & Schuster Adult Publishing Group. Poter, M. E., 1998b.Competitive Strategy: Techniques for Analyzing Industries and Competitors, The U. S.: Simon & Schuster Adult Publishing Group. Shephard, R. W., 1970. Theory of Cost and Production Functions. Princeton University Press: Princeton. Sueyoshi, T., 1991. “Estimation of Stochastic Frontier Cost Function Using Data Envelopment Analysis: An Application to AT&T Divestiture.” Journal of the Operational Research Society. 42: 463-477. Seiford and M. Lawrance, 1997. “A bibliography for Data Envelopment Analysis (1978~1996). ” Annals of Operational Research. 79: 393-438. Yue, P., 1992. “Data Envelopment Analysis and Commercial Bank Performance: A Primer with Applications to Missouri Banks.” Federal Reserve Bank of St. Louis. 31-35.
摘要: 
本文旨在實證當前台灣生技新藥產業廠商之技術效率、廠商之社經背景對其效率值之影響,與研究「生技新藥產業發展條例」施行前後生技新藥廠商之跨年度效率值表現情形。利用2007年7月4日至2009年2月3日止已申請通過「生技新藥產業發展條例」之13家生技新藥公司資料進行二階段資料包絡分析法 (Two – Stage DEA) 與Malmquist生產力指數 (Malmquist Productivity Index) 兩種方法之研究分析。
首先觀察相關研究與生技新藥產業特性分別設定四個投入變數 - 「員工總人數」、「研發支出」、「研發人員碩士以上學歷之比例」與「研發年數」;三個產出項目 - 「年度營業額」與「公司擁有之專利數」;與五個環境影響因素 - 「公開發行」、「廠商位置」、「創辦人背景」、「人類藥物」與「政府計畫補助」,以2007年樣本資料來進行二階段DEA技術效率分析,進而再以Malmquist生產力指數來分析生技新藥廠商之跨年度效率變動情形。
本文以二階段DEA實證所得之技術效率做為主要比較基礎,由結果發現樣本廠商技術效率介0.109~1.000之間,共5家技術效率值為1。此外,第二階段DEA中發現,設址於科學園區或是選擇研發人類藥物,將會對廠商的技術效率值產生負向的影響。相對地,若生技新藥廠商有獲得政府小型企業創新研發計畫(SBIR)補助,對於技術效率則有正面的助益。二階段DEA實證結果進而可歸納出以下之結論:
1.13個樣本生技新藥廠商中以研發「植物用藥」的公司在技術效率
上表現最佳,其次依序為「慢性病藥物」廠商、「癌症藥物」廠
商與「其他人類用藥物」廠商。
2.以DEA衡量樣本廠商現階段之規模報酬屬性,發現屬於固定規模報
酬者有8家 (占62%);遞增規模報酬廠商有5家 (占38 %)。而樣本
廠商中並無存在規模報酬遞減者。
3.整體而言,具有以下特性之生技新藥廠商技術效率表現較佳:
(1)設廠於非科學園區;(2)研發「非人類藥物」;(3)申請
通過政府小型企業創新研發計畫補助。
此外,針對6家生技新藥廠商之Malmquist生產力指數分析結果顯示,「生技新藥產業發展條例」實施後除了研發「植物用藥」之廠商生產力呈現進步外,「人類癌症藥物」與「人類慢性病藥物」廠商生產力變動都呈現衰退。

This study examined the technical efficiency (TE) of Taiwan's biopharmaceutical firms, gauged the impact of the environmental factors to firms' efficiency, and investigated the biopharmaceutical firms' efficiency performance after “Statute for Biopharmaceutical Industry Development, SBID” practiced since July 2007. The “Two - Stage DEA” and “Malmquist Productivity Index”methods were applied to estimate the data of 13 biopharmaceutical firms who had certificated by SBID prior to the 3rd /February/2009.
First, the related thesises and the characteristic of biopharmaceutical industry were observed to set up “four inputs”, the total number of employees, R & D expenditures, the ratio of master''s degree or higher in R & D department, and R & D duration, “two outputs”, annual turnover and the number of patents, and “five environmental factors”, IPO, location, founder background, human medicine, and government R&D support, to proceed two stage DEA and Malmquist productivity index.
TE was used as a benchmark for comparing efficiency in this study. From the result, biopharmaceutical firms' TEs were between 0.109 and 1.000. Within 13 sample firms, 5 biopharmaceutical firms' TEs were “1”. Moreover, the research argued that the biopharmaceutical firm who located in science parks or researched human medicine tended to have worse TE. On the contrary, biopharmaceutical firms which received government subsidy were likely to have better TE.The following conclusion could be drawn from the two stage DEA analysis:
1.“Plant used medicine firm” had the most outstanding
performance in technical efficiency, and it was followed
by “chronic disease medicine firm”, “cancer medicine
firm” and “other human medicine firm”.
2.When estimating the RTS, there were 8 sample firms in
the CRS stage, accounting for 62%, and 5 sample firms in
the IRS stage, making up 38%. There were no sample firms
in the DRS stage.
3.In general, the biopharmaceutical firms having following
characteristics exhibited better TE: (1) located in non-
science park areas; (2) researched non-human medicine;
(3) received government SBIR subsidy.
According to Malmquist productivity index estimation, only “plant used medicine” firm's productivity trend displayed increase after SBID bought into practice. On the other hand, “chronic disease medicine” firms and“cancer medicine” firms' productivity trend displayed decrease.
URI: http://hdl.handle.net/11455/28328
其他識別: U0005-2107200908493500
Appears in Collections:應用經濟學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.