Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2835
DC FieldValueLanguage
dc.contributor陳政雄zh_TW
dc.contributorJenq-Shyong Chenen_US
dc.contributor.author呂佳鴻zh_TW
dc.contributor.authorLu, Chia-Hungen_US
dc.contributor.other機械工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-05T11:44:03Z-
dc.date.available2014-06-05T11:44:03Z-
dc.identifierU0005-0808201314132400en_US
dc.identifier.citation[1] E. E. Mitchell, R. Demoyer, And J. Vranish, “ A New Metglas Sensor,” IEEE Transactions on Industry Applications , Vol. 26 , NO. 6, May 1986. [2] Akram Hosain ,and Muhammad H. Rashid, “ Force Transducer Using Amorphous Metglas Ribbon ,” IEEE Transactions On Industry Applications,Vol.26,NO.6,November/December1990 ,pp.1158~116. [3] Dimitrios Kouzoudis and Dionysios E. Mouzakis, “A 2826MB Metglas ribbon as a strain sensor for remote and dynamic mechanical measurements,” Sensors and Actuators A, Vol.127,No2, p.355, 2006. [4] Ee Lim Tan, Brandon D Pereles, Ranyuan Shao, Justin Ong and Keat Ghee Ong, “A wireless, passive strain sensor based on the harmonic response of magnetically soft materials ,” Smart Materials and Structures, 13 February 2008. [5] G. Ausanio , A.C. Barone , C. Hison , V. Iannotti , G. Mannara , L. Lanotte, “Magnetoelastic sensor application in civil buildings monitoring,” Sensors and Actuators A, 123–124 (2005) 290–295. [6] A. Ludwig, M. Tewes, S. Glasmachers, M. L.ohndorf, E.Quandt, “High-Frequency Magnetoelastic Materials for Remote-Interrogated Stress sensors,” Journal of Magnetism and Magnetic Materials,pp.1126-1131,2002. [7] B. Peng, W.L. Zhang, W.X. Zhang, H.C. Jiang, S.Q. Yang, “Simulation of stress impedance effect in magnetoelastic films,”Journal of Magnetism and Madnetic Materials, Vol. 288, p.326-330, 2005. [8] Stefan Schmidt and Craig A. Grimes, “Elastic Modulus Measurement of Thin Films Coated onto Magnetoelastic Ribbons,” IEEE TRANSACTIONS ON MAGNETICS, VOL. 37, NO. 4, JULY 2001. [9] Mahaveer K Jain, Stefan Schmidt, Keat Ghee Ong, Casey Mungle and Craig A Grimes, “magnetoacoustic remote query temperature and humidity sensors,”Smart Mater. Struct. 9,pp.502-510,2000. [10] S. Huang, J. Hu, J. Wan, M.L. Johnson, H. Shu, B.A. Chin,“The effect of annealing and gold deposition on the performance of magnetoelastic biosensors,” Materials Science and Engineering C 28, pp. 380-386, 2008. [11] J.M. Barandiaran , J. Gutierrez , C. Go’mez-Polo, “New sensors based on the magnetoelastic resonance of metallic glasses,” Sensors and Actuators, Vol.81, p. 154–157, 2000. [12] A. Ben Amor∗, T. Budde, H.H. Gatzen, “A magnetoelastic microtransformer-based microstrain gauge,” Sensors and Actuators A, Vol.129 p.p 41–44, 2006. [13] N. Kontos, L. Theodorakis, E. Hristoforou, “Resonance Techniques For Inductive Sensor Applications,” International Measurement Company, p.255-159, 2004. [14] R.J. Ditchburn, S.K. Burke, “Planar rectangular spiral coils in eddy-current non-destructive inspection,”NDT&E international, Vol. 38,pp.690-700,2005. [15] Adoum Kriga, Desire Allassem, Malloum Soultan, Jean-Pierre Chatelon, Ali Siblini, Bruno Allard, Jean Jacques Rousseau, “Frequency characterization of thin soft magnetic material layers used in spiral inductors,”Journal of Magnetism and Magnetic Matrials, Vol.324, pp.2227-2232,2 012. [16] Yu-Jung Cha, Baekil Nam, Jongryoul Kim, Ki Hyeon Kim, “Evaluation of the planar inductive magnetic field sensors for metallic crack. detections,” Sensors and Actuators A, Vol.162, pp.13-19, 2010. [17] R.R. Robainaa, Hector Trujillo Alvarado, J.A. Plaza, “Planar coil-based differential electromagnetic sensor with null-offset,” Sensors and Actuators A, Vol.164, pp.15-21, 2010 [18] Christian Peters , Yiannos Manoli, “Inductance calculation of planar multi-layer and multi-wire coils:An analytical approach,” Sensors and Actuators A, Vol.145-146, pp.394-404, 2008. [19] 鄭振宗,呂志誠, “通量閘磁強計之原理與應用”, 「台灣磁性技術協會會訊」第51 期,9 至16 頁,民國九十九年。 [20] A. Baschirotto, E. Dallago, etc “Development and Comparative Analysis of Fluxgate Magnetic Sensor Structures in PCB Technology ,” IEEE TRANSACTION ON MAGNETICS, VOL. 42, NO. 6 JUNE 2006. [21] M. Gonzalez-Guerrero, L. Perez, C. Aroca, M.C. Sanchez, E. Lopez, P.Sanchez, “Hybrid ferrite-amorphous planar fluxgate,” Journal of Magnetism and Magnetic Materials, pp.272-276,2004. [22] L. Perez , C. Aroca , P. Sanchez , E. Lopez , M.C. Sanchez, “Planar fluxgate sensor with an electrodeposited amorphous core,”Sensors and Actuators A, Vol.109, pp.208-211, 2004. [23] Roman Szewczyk, Adam Bie’nkowski, “Stress dependence of sensitivity of fluxgate sensor,” Sensors and Actuators A, Vol.110, pp.232-235,2004. [24] Obama, Masao, “Strain gage,” 1989, United Stated Patent. [25] Cedell, Tord, “Sensor,” 2003, United Stated Patent. [26] Tetsuo Inoue, Yokohama, “Strain Sensor,” 2005, United Stated Patent. [27] 張煦、李學養, “磁性物理學,’’聯經出版事業有限公司,1982。 [28] B. D. Cullity,“Introduction To Magnetic Materials,”Chapter 8. [29] 李明田,“智能材料”。 [30] A.G. Olabi, A. Grunwald, “Design and applicaton of magnetostrictive materials,’’ Materials&Design,Vol.29, pp.469-483,2008. [31] 宛德福、馬興隆,“磁性物理學,”電子科技大學出版社,1994。 [32] 金重勳, “磁性技術手冊,” 中華民國磁性技術協會,2002。 [33] 洪宜君,“無線式磁彈薄膜之應變感測器研究,”國立中正大學機械工程研究所碩士論文,2011。 [34] M. H. Phan and H. X. Peng, “Giant magneto-impedance materials: Fundamentals and applications,” Progress in Materials Science 53, pp.323-420, 2009. [35] Inductive and Magnetic Sensors. [36] C. Tannous and J. Gieraltowski, “GIANT MAGNETO-IMPEDANCE AND ITS APPLICATIONS,”physics, 2003en_US
dc.identifier.urihttp://hdl.handle.net/11455/2835-
dc.description.abstract傳統應變規分有金屬絲與半導體式,然而受限於金屬絲應變規靈敏性不足,而半導體式應變規易受溫度影響,造成量測可靠性、穩定性與重複性不準確,且兩者皆為有線式,因此傳統應變規無法使用在需求高靈敏性量測的高剛性受測物場合中,為解決上述問題本文提出使用高靈敏性的平面型通量閘感測器為架構,以達到高靈敏性的非接觸式磁性應變計。   本文使用低成本及具備高靈敏特性的Metglas 2714A(Co66Fe4Si15B15)鈷基態非晶相金屬薄膜做為感應材料,利用平面型磁通閘架構,以同軸式雙平面線圈,利用激磁線圈激發薄膜與接收線圈偵測薄膜導磁率變化,並使用RLC振盪電路增加阻抗匹配與高電能傳輸,將平面線圈與薄膜作為RLC電路的電感,當薄膜受到應變時產生導磁率變化,改變接收線圈的感應電壓,造成電感值改變,輸出訊號由後端放大電路處理。為測試磁性應變感測器的性能,將磁彈薄膜黏貼於鋁合金試片與不銹鋼試片,分別以拉伸試驗、彎曲試驗、外在偏磁試驗來測試磁性應變計的靈敏性以及其特性,敲擊振動實驗測試磁彈薄膜的動態特性,證實磁性應變計的靈敏性且頻率響應與應變規相同,最後另外探討不同供應訊號源對本實驗磁性應變感測器靈敏性的差異。   以拉伸試驗量測感測器的靈敏性並與半導體式應變規比較,證實磁性應變計可量測到100 micro strain內的範圍,且靈敏性比半導體式應變規高17.58倍以上,彎曲測試由電壓變化結果證實磁彈薄膜受拉伸與彎曲應力影響導磁率變化相反,且靈敏性相同,偏磁測試中證實以1 Gauss以下且垂直於交流激磁場方向的偏磁具有較高靈敏性的結果,敲擊測試結果證實磁彈薄膜的動態響應良好,可感測到不銹鋼試片受應變所產生約200 Hz的敲擊機械共振頻率,且訊雜比到達123,符合高靈敏性感測器的指標值,最後供應訊號源測試結果以定電流源供應於激磁線圈靈敏性較好,高於定電壓源17.2倍。   本研究所開發的磁性應變計量測靈敏性高於半導體式應變規,且可達到無線感測,平面線圈感測解決了繞線圈所造成體積龐大的問題,感測器製造較為容易且價格便宜,符合實際運用上的需求。未來需朝向將平面線圈的面積透過半導體製程技術縮小並與磁彈薄膜封裝以減少外在雜訊,將薄膜透過熱處理以提高靈敏性,目標以研發出高靈敏性且無線感測之磁性應變規。zh_TW
dc.description.abstractTraditional strain gauges divided metallic and semiconductor type, however limited by the wire strain gauge sensitivity inadequate, and semiconductor strain gauge easily influenced by temperature , resulting in measurement reliability, stability and repeatability inaccurate and both need wire contact, so traditional strain regulation can’t be used in measuring the high rigidity specimen and need high sensitivity measurement occasions, according to above problems, this research proposed using highly sensitive planar fluxgate sensor as the framework in order to achieve high sensitivity and non-contact magnetic strain sensor. In other to achieve the desirable functionality with accuracy, base on magnetoelastic effect, this study used the low-priced and highly-sensitivity Metglas 2714A (Co66Fe4Si15B15) cobalt-based amorphous ribbon as a sensing material, use the planar fluxgate framework with exciting coil and receiving coil combine magnetoelastic film, the exciting coil is used to exciting magnetoelastic film and receiving coil is used to induce the film permeability, however using the RLC oscillation circuit can improve impedance mating for two coil, this framework is used plane coil and the film as a RLC circuit inductance , when the film is change the permeability by the mechanical deformation , the induced voltage is change in the receiver coil and change coil’s inductance, the output signal is amplified by the processing circuit. Bond the magnetoelastic film on the Aluminum specimen and stainless steel specimen to examining the tensile test, bending test, vibration test and pre-magnetization with a permanent bias test in other to operate in a optimize region of the performance and so on prove magnetic strain sensor have highly sensitivity and dynamic response property and another test is different signal source for exciting coil to compare sensitivity. The examination result for tensile test to measure the sensitivity of the sensor and compare with semiconductor strain gauge, confirmed magnetoelastic film sensors can measure strain to 100 με, Sensitivity is higher 17.58 times more. The bending tests confirmed film that endure tensile and bending stresses have opposite permeability trend, and the similar sensitivity. The permanent bias test is prove when one Gauss or less bias field are perpendicular to the excitation field axis, the results will with high sensitivity. The vibration test confirms good dynamic response can be sensed in a stainless steel test piece of about 200 Hz resonance frequency, and the signal to noise ratio is 123, corresponding the highly sensitivity sensor and the signal source test result is prove that current source sensitivity is higher than voltage source about 17.2 times. Magnetic strain sensor sensitivity is higher than the semiconductor strain gauge and can remote measurements, moreover magnetic strain sensor is simplified manufacturing process and low cost, so this sensor is suitable for practical applications. In the future planar coil needs reduce area through the semiconductor process technology and shielded the magnetoelastic film to against noise, and then increase sensitivity through heat treatment, the research goals is develop non-contact magnetic strain sensor.en_US
dc.description.tableofcontents摘要 I Abstract II 第一章 緒論 1 1.1 前言 1 1.2 實驗動機與目標 1 1.3 論文架構 2 1.4 研究主題與目標 3 1.5 文獻回顧 3 1.5.1 磁彈薄膜相關研究 3 1.5.2 平面線圈相關文獻 16 1.5.3 通量閘相關文獻 20 1.6 專利分析 23 第二章 磁性理論 30 2.1 磁性特性 30 2.1.1 非晶相鐵磁性材料 31 2.1.2 磁滯伸縮效應 33 2.1.3 磁致伸縮材料特性 39 2.1.4 應力阻抗效應 42 第三章 感測器與量測架構 44 3.1 通量閘 44 3.2 感測器架構 46 3.2.1 電磁感應定律 47 3.2.2 磁芯 48 3.2.3 平面線圈設計 49 3.3 後端處理電路 50 3.3.1 電源供應器 51 3.3.2 電壓緩衝電路 51 3.3.3 電壓放大電路 52 3.3.4 低通濾波電路 54 3.3.5 RMS交流轉直流電路 55 3.4 串聯RLC諧振電路 58 第四章 磁彈薄膜應變感測器性能測試 63 4.1 拉伸試驗 63 4.1.1 實驗架構與流程 64 4.1.2 偏磁測試 66 4.2 彎曲測試 68 4.3 動態響應振動測試 69 第五章 實驗結果 70 5.1. 拉伸試驗 70 5.1.1 Flux gate拉伸實驗結果 70 5.1.2 加上RLC電路之拉伸試驗 73 5.1.3 偏磁測試 78 5.2 彎曲測試實驗結果 83 5.3 敲擊振動試驗 86 5.4 定電流源輸入 88 第六章 結論暨未來展望 95 6.1. 結論 95 6.2. 未來展望 97 附錄 98zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0808201314132400en_US
dc.subject逆磁致伸縮zh_TW
dc.subjectinverse magnetostrictiveen_US
dc.subject半導體式應變規zh_TW
dc.subject通量閘zh_TW
dc.subjectRLC振盪電路zh_TW
dc.subjectsemiconductor strain gaugeen_US
dc.subjectfluxgateen_US
dc.subjectRLC circuiten_US
dc.title基於通量閘之磁彈薄膜應變計研究zh_TW
dc.titleA study of magnetoelastic film fluxgate-based strain sensoren_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.