Please use this identifier to cite or link to this item:
標題: 壓電薄膜應用於軟性基材之機械性質的研究
A Study of mechanical properties for piezoelectric thin film on flexible substrates
作者: 坎普里
關鍵字: 壓電;Piezoelectric;熔膠凝膠法;Lead Zirconate titanate;sol-gel;strain stress;Young’s Modulus;yield stress;Polyimide;silicon
出版社: 機械工程學系所
引用: [1] REFERENCES ( Wikipedia, ''Piezoelectricite'', Wikipedia, l''encyclopedie libre) [2] Petroni, S., et al. (2012). "Flexible piezoelectric cantilevers fabricated on polyimide substrate." Microelectronic Engineering 98: 603-606. [3]Tseng, H. J., et al. (2013). "Flexible PZT thin film tactile sensor for biomedical monitoring." Sensors (Basel) 13(5): 5478-5492. [4] Liu, H. C., et al. (2011). "Piezoelectric MEMS Energy Harvester for Low-Frequency Vibrations With Wideband Operation Range and Steadily Increased Output Power." Journal of Microelectromechanical Systems 20(5): 1131-1142. [5] Hasenkamp, W., et al. (2012). "Polyimide/SU-8 catheter-tip MEMS gauge pressure sensor." Biomed Microdevices 14(5): 819-828. [6]Yoshino, Y. (2009). "Piezoelectric thin films and their applications for electronics." Journal of Applied Physics 105(6). [7] Kobayashi, T., et al. (2008). "Fabrication of piezoelectric microcantilevers using LaNiO(3) buffered Pb(Zr,Ti)O(3) thin film." Journal of Micromechanics and Microengineering 18(3). [8] Qi, Y., et al. (2010). "Piezoelectric ribbons printed onto rubber for flexible energy conversion." Nano Lett 10(2): 524-528. [9] Qiu, Y., et al. (2012). "Flexible piezoelectric nanogenerators based on ZnO nanorods grown on common paper substrates." Nanoscale 4(20): 6568-6573. [10] Wu, J. M., et al. (2012). "Lead-free nanogenerator made from single ZnSnO3 microbelt." ACS Nano 6(5): 4335-4340. [11] Xu, S., et al. (2013). "Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device." Nano Lett 13(6): 2393-2398. [12] Yang, Y., et al. (2013). "Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies." ACS Nano 7(1): 785-790. [13] Chung, S. Y., et al. (2012). "All-solution-processed flexible thin film piezoelectric nanogenerator." Adv Mater 24(45): 6022-6027. [14]Yiu, E. M., et al. (2012). "Vibratory and perceptual measurement of resonant voice." J Voice 26(5): 675 e613-679. [15]Webber, S. C., et al. (2013). "GT3X+ Accelerometer, Yamax Pedometer and SC-StepMX Pedometer Step Count Accuracy in Community-Dwelling Older Adults." J Aging Phys Act. [16] Bowen, C. R., et al. (2008). "Flexible piezoelectric transducer for ultrasonic inspection of non-planar components." Ultrasonics 48(5): 367-375. [17] Zhu, B. P., et al. (2008). "Piezoelectric PZT thick films on LaNiO(3) buffered stainless steel foils for flexible device applications." J Phys D Appl Phys 42(2): nihpa129997. [18] Meyers, F. N., et al. (2013). "Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites." Nanotechnology 24(18): 185501. [19] Shih, J. L., et al. (2013). "Applications of flexible ultrasonic transducer array for defect detection at 150 degrees C." Sensors (Basel) 13(1): 975-983. [20]Harvey, G., et al. (2009). "Flexible ultrasonic transducers incorporating piezoelectric fibres." IEEE Trans Ultrason Ferroelectr Freq Control 56(9): 1999-2009. [21]Novakova, K., et al. (2012). "Application of piezoelectric macro-fiber-composite actuators to the suppression of noise transmission through curved glass plates." IEEE Trans Ultrason Ferroelectr Freq Control 59(9): 2004-2014. [22]Park, K. I., et al. (2010). "Piezoelectric BaTiO(3) Thin Film Nanogenerator on Plastic Substrates." Nano Lett. [23]Persano, L., et al. (2013). "High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene)." Nat Commun 4: 1633. [24]Petroni, S., et al. (2012). "Tactile multisensing on flexible aluminum nitride." Analyst 137(22): 5260-5264. [25]Sharma, T., et al. (2013). "Flexible thin-film PVDF-TrFE based pressure sensor for smart catheter applications." Ann Biomed Eng 41(4): 744-751. [26]Xu, S., et al. (2013). "Flexible Piezoelectric PMN-PT Nanowire-Based Nanocomposite and Device." Nano Lett 13(6): 2393-2398. [27]Yu, R., et al. (2013). "GaN Nanobelt-Based Strain-Gated Piezotronic Logic Devices and Computation." ACS Nano 7(7): 6403-6409. [28]Chun-Hung and Chia-Che Wu. (2010). “Fabrication of Lead Zirconium titanium and silica composite films on copper/polyimide flexible substrates [29] Chang Liu ( ). “Foundation of MEMS” [30]A.F. Bower, 2008. [31]Housner, G. W. and T. Vreeland (1966). The analysis of stress and deformation. New York,, Macmillan. [32] K.J.Chung, C.F.Lin and W.C.Chiang (2013). “Effect of Strain Rates on the Mechanical Behavior of Cu Thin Films of various Thicknesses” [33]Aaritalo, V., et al. (2007). "Sol-gel-derived TiO(2)-SiO (2) implant coatings for direct tissue attachment. Part I: design, preparation and characterization." J Mater Sci Mater Med 18(9): 1863-1873. [34]Abbaspour, A. and A. Ghaffarinejad (2009). "Method for preparation of a sol-gel-derived carbon ceramic electrode using microwave irradiation." Anal Chem 81(9): 3660-3664. [35]Aaritalo, V., et al. (2007). "Sol-gel-derived TiO(2)-SiO (2) implant coatings for direct tissue attachment. Part I: design, preparation and characterization." J Mater Sci Mater Med 18(9): 1863-1873 [36]Abdel Aal, A., et al. (2009). "Sol-Gel and Thermally Evaporated Nanostructured Thin ZnO Films for Photocatalytic Degradation of Trichlorophenol." Nanoscale Res Lett 4(7): 627-634. [37]Abi Jaoude, M., et al. (2012). "A design of experiment approach to the sol-gel synthesis of titania monoliths for chromatographic applications." Anal Bioanal Chem 403(4): 1145-1155. [38]Ahmad, M., et al. (2007). "Fabricating sol-gel glass monoliths with controlled nanoporosity." Biomed Mater 2(1): 6-10. [39]Allain, L. R., et al. (1997). "Doped Thin-Film Sensors via a Sol-Gel Process for High-Acidity Determination." Anal Chem 69(15): 3076-3080. [40]Catauro, M., et al. (2008). "Sol-gel processing of drug delivery zirconia/polycaprolactone hybrid materials." J Mater Sci Mater Med 19(2): 531-540. [41]Yang, P., et al. (2011). "Various Au nanoparticle organizations fabricated through SiO2 monomer induced self-assembly." Langmuir 27(3): 895-901. [42]Pierre, A. C. (1998). Introduction to sol-gel processing. Boston, Kluwer Academic Publishers. [43]Brinker, C. J. and G. W. Scherer (1990). Sol-gel science : the physics and chemistry of sol-gel processing. Boston, Academic Press. [44] Shengde ZHANG,S.M,M.S,T.N and K.Kobayashi (2012). “Tensile Properties and viscoelastic Model of a polyimide film”
The objective of this study is to study the mechanical properties of piezoelectric thin film on polyimide flexible substrate by tensile test. The first step is to fabricated and prepared the sample and the specimen, therefore PI+PZT and PI+SiO2 will be fabricated using low temperature sol-gel process to spin coated PZT to PI and SiO2 to PI at 3 different layers(thickness) respectively 3μm, 6μm and 9μm for PI+PZT and 3.6μm,7.2μm, 10.8μmfor PI+SiO2. During the sintering process raw PI will subject to the sintering temperature (1500 C for every sintering process, every layer) for 1, 2, 3 layers noted T1, T2, T3. Four type of sample was being needed for this experiment PI+PZT, PI+SiO2, raw PI at sintering Temperature and raw PI (PI without any treatment). Hand cutting will be used to prepare specimens using dog bone type specimen.
Then a micro-force tensile testing machine (MTS Tytron 250 ) was used to test the specimens at different tensile speed 0.01mm/s, 0.04mm/s, 0.07mm/s and 0.1 mm/s. the offset method was used on the strain-stress curves to calculate the young’s modulus and the yield stress through Excel software trendline application.
The experiment results showed that the tensile test can be used to successfully determine the young’s modulus and the yield stress of the piezoelectric thin film on flexible substrate, PI+SiO2 and raw PI.
The yield stress and the young’s modulus show that the PZT SiO2 affect the mechanical behavior of the PI and affected it more with the increasing of the PZT or SiO2 film thickness by comparing with PZT it is shown that the SiO2 affect much more the PI mechanical behavior.It is shown that the effect of the sintering temperature (1500C) on the PI can be minimize because the PI glass temperature is more higher (4100C). Comparing the all strain-stress curves, young’s modulus and yield stress; it is shown that these devices are sensitive to the tensile speed.
其他識別: U0005-3008201316061700
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.