Please use this identifier to cite or link to this item:
標題: 多軸微定位平台控制探討
Study on the Control of A Multi-Axis Micro-Positioning Stage
作者: 于孝勇
Yu, Hsiao-Yung
關鍵字: 定位平台;positioning stage;PID;壓電致動器;撓性結構;PID;piezoelectric actuators;flexural structures
出版社: 機械工程學系所
引用: [1] J.M. Paros and L. Weisbord, “How to Design Flexure Hinge,” Machine Design, Vol. 37, pp. 151~156, Nov., (1965). [2] S.S. Ku, U. Pinsopon, S. Cetinkunt, and S.I. Nakajima, “Design, Fabrication, and Real-Time Neural Network Control of a Three-Degrees-of-Freedom Nanopositioner,” IEEE/ASME Transactions on Mechatronics, Vol. 5, pp. 273-280, (2000). [3] H. Zhou, X. Xiao, L. Jiang, “DC Servo Controlled System Design on Bomb-Disposal Robot Algorithm,” Proceeding of the 8th International conference on Electronic Measurement and Instruments, Xi’an, PRC, pp. 510-514, July 16~18, (2007). [4] Y.T. Liu, R.F. Fung, C.C. Wang, “Precision Position Control Using Combined Piezo-VCM Actuators,” Precision Engineering, Vol. 29, No. 4, pp. 411-422, (2005). [5] Q.S. Xu, Y.G. Li, Senior Member, “Radial Basis Function Neural Network Control of an XY Micropositioning Stage Without Exact Dynamic Model,” Proceeding of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 498-503, July 14-17, (2009). [6] C.J. Lin, P.T. Lin, “Particle Swarm Optimization Based Feedforward Controller for a XY PZT Positioning Stage,” Mechatronics, Vol. 22, pp. 614-628, (2012). [7] C.W. Lee, S.W. Kim, “An Ultraprecision Stage for Alignment of Wafers in Advanced Microlithography,” Precision Engineering, Vol. 21, No. 2-3, pp. 113-122, (1997). [8] 馮榮豐、楊竣翔、韓長富,”磁滯與摩擦力考慮的奈米定位,”物理雙月刊, 二十五卷第三期,428-433頁,(2003)。 [9] W.T. Ang, F.A. Garmbn; P.K. Khosla and C.N. Riviere, “Modeling Rate-Dependent Hysteresis in Piezoelectric Actuators,” Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nevada, USA, pp. 1975-1980, Oct. 27-31, (2003). [10] 陳永平、張浚林,可變結構控制設計,全華科技圖書,台北,第一、二章,修訂版,(2002)。 [11] W.-D. Chang and J.-J. Yan, “Adaptive Robust PID Controller Design Based on a Sliding Mode for Uncertain Chaotic Systems,” Chaos, Solitons and Fractals, Vol. 26, pp. 167-175, (2005). [12] Q. Xu and Y. Li, “CMAC-Based PID Control of an XY Parallel Micropositioning Stage,” Advances in Neural Networks-ISNN 2009, W. Yu, H. He, and N. Zhang, Eds., Springer, 2009, ISBN: 978-3-642-01509-0, Lecture Notes in Computer Science 5552, Part II pp. 1040-1049, (2009). [13] H.J. Shieh, Y.J. Chiu, and Y.T. Chen, “Optimal PID Control System of a Piezoelectric Micropositioner,” Proceeding of the 2008 IEEE/SICE International Symposium on System Integration, Nagoya, Japan, pp. 1-5, Dec., (2008). [14] X. D. Chen, S.Y. Zhang, and X.L. Bao, “ Master and Slave Control of a Dual-Stage for Precision Positioning,” Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shan Yang, PRC, pp. 583-587, Jan. 2-9, (2008). [15] S.L. Xiao, Y.M. Li, and J.G. Liu, “A Model Reference Adaptive PID Control for Electromagnetic Actuated Micro Positioning Stage,” Proceeding of the 8th IEEE International Conference on Automation Science and Engineering, Seoul, Korea, pp. 97-102, Aug. 20-24, (2012). [16] P.D. Rohitha S. Senadheera and J. K. Pieper, “Fully Automated PID and Lead/Lag Compensator Design tool for Industrial Use,” Proceedings of the 2005 IEEE Conference on Control Applications. Toronto, Canada, pp. 1009-1014, Aug. 28-31, (2005). [17] M.S. Kim, J.H. Kim, “Design of Gain Scheduled PID Controller for Precision Stage in Lithography,” Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, Changchun, PRC, pp. 3781-3786, Aug. 9-12, (2009). [18] J. Lin, H. Chiang, C.C. Lin, “Tuning PID control Parameters for Micro-Piezo-Stage by Using Grey Relational analysis,” Expert Systems with Applications Vol. 38, No. 5, pp. 13924-13932, (2011). [19] M.H. Smith, A.M. Annaswamy, and A.H. Slocum, “Adaptive Control Strategies for a Precision Machine Tool Axis,” Precision Engineering, Vol. 17, No. 3, pp. 192-206, (1995). [20] 陳燕銘,微定位平台之設計與分析,碩士論文,國立中興大學機械工程學系,台中,(2011)。 [21] Physik Instrumente, Micropositioning, Nanopositioning, Nano-automation, 2001. [22] B. H. Kang, J. T. Y. Wen, N. G. Dagalakis, and J. J. Gorman, “Analysis and Design of Parallel Mechanisms with Flexure Joints,” IEEE Transactions on Robotics, Vol. 21, No. 6, pp. 1179-1185, (2005). [23] 陳宗霖,微小化定位平台之控制器設計,碩士論文,國立中興大學機械工程學系,台中,(2006)。 [24] 伊相志,SQL Server 2008 Data Mining資料採礦,悅知文化,台北,第六章,(2009)。 [25] MicreE System, MercuryTM 3500 Smart Encoder Systems, DS-M3500 Rev H, (2008). [26] National Instruments, NI 632x Specifications, Part No. 370785C-01, Aug., (2010). [27] 王呼佳、陳洪軍,ANSYS 工程分析進階實例,中國水利水電出版社,第四章,(2006)。 [28] Y.K. Yong, T.F. Lu and D.C. Handley, “Review of Circuar Flexure Hinge Design Equations and Derivation of Empirical Formulations,” Precision Engineering, Vol. 32, No 2, pp. 63-70, (2008).
本研究主要是針對一個三軸六自由度的精密定位平台,利用 PID 控制法則進行控制的探討。所使用的驅動源為三Pst150/5x5/20壓電致動器(PZT)用於 X、Y 及 θ軸的驅動,另三根選用PI P-840.10壓電致動器用於Z 、ψ與 φ軸的驅動。而平台結構則是由四個對稱的L型撓性鉸鏈組成,在作動時,可減少耦合現象的產生。
在訊號處理方面,採用Mercury 3500光學尺量測系統來截取平台的位移訊號,再採用電腦架構搭配NI PCIe-6323型的AD/DA 傳輸介面卡進行訊號的傳遞與訊號處理。在控制法則部分,採用Ziegler and Nichols臨界靈敏度調整法,並透過MATLAB的NCD Toolbox模組進行模擬,計算出各軸之PID參數,而後應用於實驗。
經由實驗結果,在步階定位實驗中,X軸、Y軸、Z軸、θ軸、ψ與φ軸的誤差最大不超過0.0752 μm與0.825 μrad。而在斜坡追蹤實驗中,X軸、Y軸、Z軸、θ軸、ψ與φ軸的誤差最大不超過0.4769 μm與3.3209 μrad。最後,在循圓測試實驗中,X軸與Y軸的誤差最大不超過0.2388 μm。
其他識別: U0005-0608201316562100
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-102-7098061069-1.pdf2.15 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.