Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2840
標題: 多重大圓球面重建
Multiple Great Circles Full Sphere Reconstruction
作者: 羅志平
Lo, Chih-Ping
關鍵字: 球諧函數;spherical harmonics;單範正交;交點誤差方程式;最小平方法;三次元量床;球面重建技術;旋轉機構;編碼器;orthonormal;intersection error equation;least squares method;CMM;reconstruction of full sphere technology;rotary mechanism;encoder
出版社: 機械工程學系所
引用: [1]劉沛縈,真圓檢測誤差分離技術,國立中興大學機械工程學系碩士論文2010 [2]Donaldson R. A simple method for separating error from test ball roundness error Ann. CIRP1972;21. [3]Bryan J B,Clouser R W,Holland E. Spindle accuracy. American Machinist, 1967;4. [4]Eric R. Marsha, David A. Arneson b,Donald L. Martinc, A comparison of reversal and multi probe error separation, Precision Engineering 2010;34:85-91. [5]Cao Linxiang ,The measuring accuracy of the multistep method in the error separation technique, J. Phys. E:Sci. Instrum.1989;22;903-906. [6]Tau Jiubiu , QiaugXiru , DiugXueaisi , A Super precision Measuring Method and the Corresponding Measuring System for Error Movement of Instrument Spindles, 1991;3:2449-2454. [7]周佳嶙,球面干涉檢驗之研究,國立中興大學機械工程學系碩士論文2010 [8]N. Cho, J. Tu ,Roundness modeling of machined parts for tolerance Analysis, Precision Engineering.2001;25:35–47. [9]TohruKanada , Estimation of sphericity by means of statistical processing for roundness of spherical parts1997;117-122 [10]范光照、張郭益, 精密量測. 高立圖書有限公司2005 [11]黃梓輔,三探針真圓度量測軸誤差分離技術之研究,國立中興大學機械工程學系碩士論文2007
摘要: 
本文提出一球面重建技術以量測待測物之多重大圓輪廓並將其重建成原始球面為目的,利用球諧函數單範正交之特性於特定階次給定其係數使模擬大圓具有偏心及半徑調整量等誤差趨近真實量測。推導交點誤差方程式並代入各大圓交點誤差後以最小平方法求其誤差後並將球面重建,由於一般真圓度量測以大圓輪廓為主,無法呈現其三維形貌,因此利用本文所提出之方法將有效利用多大圓輪廓重建原始球面。
實驗分成兩部分,一則利用三次元量床量測鋼球大圓,以旋轉機構配合編碼器旋轉鋼球以便量測各角度大圓,二則亦採用三次元量床量測此鋼球之全球面輪廓。前者藉由球面重建技術重建球面並與全球面輪廓進行比較分析誤差驗證本法之可行性。

The purpose of this paper is to present a spherical reconstruction technique. It is to measure the multiple great circles and rebuild the original spherical. Using orthonormal characteristics of the spherical harmonic function in a specific order given its coefficient to simulate the great circle has eccentricity and radius inaccuracy closing to the real measurement. Derivation of the intersection of error equation and substituted into the intersection error of great circle. Then using least squares method to reconstruction spherical. Because generally roundness measurement can’t display three-dimensional morphology, this method is effective to use multiple great circles reconstructing the original spherical.
The experiment is divided into two parts; first is take advantage of the CMM measuring ball’s great circle. Using rotating mechanism rotating ball and cooperate with the encoder. Therefore, CMM can measure each angle of the great circle. Second, use CMM to measure whole surface of this ball. Finally, the experiment will compare and analysis the spherical reconstruction techniques with the whole surface, verifing the feasibility of this method.
URI: http://hdl.handle.net/11455/2840
其他識別: U0005-0708201214450000
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.