Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2841
DC FieldValueLanguage
dc.contributor吳嘉哲zh_TW
dc.contributorChia-Che Wuen_US
dc.contributor.author林永祥zh_TW
dc.contributor.authorLin, Yung-Hsiangen_US
dc.contributor.other機械工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-05T11:44:04Z-
dc.date.available2014-06-05T11:44:04Z-
dc.identifierU0005-2507201213181100en_US
dc.identifier.citation參考文獻 [1] Gustafsson, D. and K. Andersson, “Effect of indoor environmental factors on development of atopic symptoms in children followed up to 4 years of age,” Paediatric and perinatal epidemiology (2004)18:17-25. [2] Pawlinska-Chmara, R., I. Wronka, and M. Muc, “ Prevalence and correlates of allergic diseases among children,” J Physiol Pharmacol, 59 (2008) Suppl 6:549-556. [3] Thomas WR, Smith WA, Hales BJ, Mills KL, O''Brien RM: Characterizationand immunobiology of house dust mite allergens. Int Arch Allergy Immunol 2002, 129(1):1-18. [4] J. J. Tsai, W. C. Chen, Relation of different food allergens to different age of asthmatic patients, J Microbiol Immunol Infect, 32, 47-51, 1999. [5] E. Engvall, P. Perlman, “Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G,” Immunochemistry, v8, pp.871-874, 1971. [6] Akhabir, L. and A. J. Sandford, “Genome-wide association studies for discovery of genes involved in asthma,” Respirology (Carlton, Vic 16:396-406. (2010). [7] Potaczek, D. P., K. Okumura, and C. Nishiyama., “ FCER1A genetic variability and serum IgE levels,” Allergy (2009)64:1383. [8] Sˇ . Posp´ısˇilova, V. Bra´zda, J. Amrichova, R. Kamermeierova, E. Palecˇek, B. Vojteˇsˇek Precise characterisation of monoclonal antibodies to the C-terminal region of p53 protein using the PEPSCAN ELISA technique and a new non-radioactive gel shift assay, Journal of Immunological Methods, 237, 51-64, 2000. [9] Y. Fu, R. Yuan, L. Xu, Y chai, X. Zhong, D. Tang, “Indicator free DNA hybridization detection via EIS based on self-assembled gold nanoparticles and bilayer two-dimensional 3-mercaptopropyltrimethoxysilane onto a gold substrate,” Biochemical Engineering Journal V23, pp.37-44,2005 . [10] Ensafia, A. A., M. Taeia, H. R. Rahmanib, T. Khayamiana, “Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode,” Electrochimica Acta (2011) 56:8176-8183. [11] C. Z. Li, Y. T. Long, J. S. Lee, H. B. Kraatz, “Protein–DNA interaction: impedance study of MutS binding to a DNA mismatch,” The Royal Society Chemistry.574-575, 2004. [12] Y. T. Long, C. Z. Li, H. B. Kraatz, J. S. Lee, “AC Impedance Spectroscopy of Native DNA and M-DNA,” Biophysical Joumal, v84, pp.3218-3225, 2003. [13] Li, C., X. Li, X. Liu, and H. B. Kraatz, “Exploiting the interaction of metal ions and peptide nucleic acids-DNA duplexes for the detection of a single nucleotide mismatch by electrochemical impedance spectroscopy,” Anal. Chem. (2010) 82:1166-1169. [14] A. A. Ensafi, M. Taei, H. R. Rahmani, T. Khayamian, “Sensitive DNA impedance biosensor for detection of cancer chronic Iymphocytic Ieukemia,based on gold nanoparticles/gold modified electrode,” Electrochimica Acta, v56, pp.8176-8183, 2011. [15] G. J. Wan, Y. X. Leng, P. Yang, J. Y. Chen, J. Wang, H. Sun,“TiN and Ti–O/TiN films fabricated by PIII-D for enhancement of corrosion and wear resistance of Ti–6Al–4V,” Surface & Coatings Technology, v186, pp.136-140, 2004. [16] X. Bin, H. B. Kraatz, “Interaction of metal ions and DNA films on gold surfaces: an electrochemical impedance study,” Analyst, v134, pp.1309-1313, 2009. [17] R. C. Bailey, J. M. Nam, C. A. Mirkin, J. T. Hupp, “Real-Time Multicolor DNA Detection with Chemoresponsive Diffraction Gratings and Nanoparticle Probes,” J. AM. CHEM., v125, pp.13541-13547, 2003. [18] A. W. Martinez, S. T. Phillhps, E. Carrilho, W. Thomas, H. Sindi, G. M. Whitesies, “Simple Telemedicine for Developing Regions: Camera Phones and Paper-Based Microfluidic Devices for Real-Time, Off-Site Diagnosis,” Anal. Chem., v80, pp.3699-3707, 2008. [19] Park, S.-J.; Taton, T. A.; Mirkin, C. A. Science 2002, 295, 1503. [20] P. H. Brazdilova, M. Fojtova, K. Vytras, M. Fojta, “Enzyme-Linked Electrochemical Detection of PCR-Amplified Nucleotide Sequences Using Disposable Screen-Printed Sensors. Applications in Gene Expression Monitoring” , Sensors, v 8, pp 193-210, 2008. [21] Y. T.L, C. Z. Li, T. C. Sutherland, H.B. Kraatz, J. S. Lee, “Electrochemical Detection of Single-Nucleotide Mismatches: Application of M-DNA,” Anal. Chem, v 76, pp 4059-4065, 2004 [22] Y. Wang, C. Li, X. Li, Y. Li, H. B. Kraatz, “Unlabeled Hairpin-DNA Probe for the Detection of Single-Nucleotide Mismatches by Electrochemical Impedance Spectroscopy,” Anal. Chem, v80, pp.2255-2260, 2008. [23] 黃建豪,「結合奈米金-免疫抗體作用於SAM修飾電極上之電化學阻抗特性變化進行微量Protein A 的檢測」,2008。 [24] 吳浩青、李永舫,「電化學動力學」,科技圖書股份有限公司出版。 [25] Evgenij Barsoukov, J. Ross Macdonald,“Impedance Spectroscopy Theory, Experiment, and Applications”Wiley-interscience. [26] S. Rudenja, C. Leygraf, J. Pan, P. Kulu, E. Talimets, V. Mikli, Surf,Coat. Technol. 114 (1999) 129– 136. [27] R.M. Souto, H. Alanyali, Corros. Sci. 42 (2000) 2201–2211. [28] E.M.A. Martini, I.L. Muller, Corros. Sci. 42 (2000) 443– 454. [29] J. N. K. Rao and A. J. Scott,“On Chi-Squared Tests for Multiway Contingency With TablesCell Proportions Estimated from Survey data” Ann. Statist. V12,pp 46-60. [30] 高濂、孫靜、劉陽橋,「奈米粉體的分散及表面改性」,五南圖書出版股份有限公司,2005。en_US
dc.identifier.urihttp://hdl.handle.net/11455/2841-
dc.description.abstract本研究成功利用奈米結構之特性,將其製作成生醫感測晶片應用於單一核苷酸變異(Single nucleotide polyphisms :SNPs)檢測上,並利用電化學阻抗分析(electrochemical impedance spectroscopy,EIS)方式進行檢測來達到省時、快速及高靈敏性。首先利用陽極氧化製程製作陽極氧化鋁模板(AAO),接著在表面濺鍍上一層金,並利電化學沉積金顆粒法於奈米結構上均勻沉積大小約10nm之奈米金顆粒,藉此提升檢測面積,增加感測器靈敏度。由於使用的檢測試片結構有所不同,其3D奈米結構之特性使傳統的Randles等效電路無法求出接附DNA後正確的阻抗值。因此將檢測之實驗數據(頻率、實部、虛部)帶入Zsimp Win電化學數值分析軟體,藉由修正其等效電路擬合出符合之等效電路。 研究發現當加入常相位角元件Q(constant phase element,CPE)並奈米結構之阻值Rn時,其擬合出之卡方值 可達4.5E-4,相較於傳統Randles等效電路卡方值 5.9E-2大幅提升準確性。因此利用修正過後之等效電路可明顯區分出match與mismatch之差異性。當Probe-DNA(T)接附References-DNA(A)為match時,ΔR/R0為30%,而Probe-DNA(T)接附References-DNA(T)為mismatch時,ΔR/R0為62%。利用阻值差異百分比可用來區分病人檢體上的變異性,進而達到未來應用於醫療快篩檢測上。zh_TW
dc.description.abstractIn the study, the biochip for examining single nucleotide polyphisms (SNPs) which uses the feature of nanostructure has been developed. Using electrochemical impedance spectroscopy (EIS) during the experiment can offer several advantages such as time requirement, good efficiency and high sensitivity. First of all, Anodic Aluminum Oxide (AAO) is fabricated by anodic oxidation. A thin film of gold is sputtered on the reaction area of the biochip and gold nanoparticles in diameter 10nm are deposited on it as well. The preparation is for increasing the area of its surface on detection, so it can improve higher sensitivity. Because of different structure of the reaction area, the traditional Randles equivalent circuit could not analyze the accurate Impedance of DNA. Zsimp Win software is used to modify an appropriate equivalent circuit to match the analyzed numbers with the experimental ones. Constant phase element (CPE) is also used in the study, and the Chi-square number of new equivalent circuit (X2) is around 4.5x10-4 better than Randles equivalent circuit’s (5.9x10-2). After modifying the equivalent circuit, the difference between match and mismatch can be identified obviously. The results show that its impedance increased 30% when probe-DNA (T) matches reference-DNA (A). On the contrary, it increased up to 62% when probe-DNA (T) mismatches reference-DNA (T). According to the achievement of the research, the percentage of increased impedance (ΔR/R0) can be used to distinguish single nucleotide polyphisms from patients, and it also can be applied in the future on the rapid detections of different diseases.en_US
dc.description.tableofcontents目錄 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2文獻回顧 3 1.3 研究目標 9 第二章 相關理論 10 2.1 電化學阻抗分析法 10 2.1.1電極的檢測方式 11 2.2檢測上阻抗圖之意義 12 2.2.1電路元件與阻抗圖之關連性 12 2.2.2等效電路與檢測之關連性 17 第三章、生醫感測晶片結構設計及製作 21 3.1高靈敏度半球型奈米生醫感測晶片結構及製造方法 22 3.1.1 AAO 奈米半球形阻障層結構製備 22 3.1.2 3D半球型奈米結構試片製備 24 3.1.3 封裝製程 24 3.1.4 沉積奈米金顆粒 25 3.2過敏疾病 DNA製備 27 3.2.1過敏疾病基因篩選 27 3.2.2過敏病患血液檢體製備 29 3.3生醫感測晶片DNA接附及EIS檢測 30 3.4阻抗數據整理 31 第四章、等效電路之分析 33 4.1 Randles等效電路 33 4.2 Heinz-Bernhard Kraatz等效電路 35 4.3 3D奈米半球形結構生醫檢測晶片等效電路 38 4.4 等效電路之比較 40 第五章 結果與討論 41 5.1 結論與未來展望 44 參考文獻 45zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2507201213181100en_US
dc.subject3D奈米結構感測器zh_TW
dc.subject3D Nanostructure, Biochipen_US
dc.subjectSNPszh_TW
dc.subjectDNAzh_TW
dc.subjectEISzh_TW
dc.subjectSNPsen_US
dc.subjectDNAen_US
dc.subjectEISen_US
dc.title奈米半球形陣列結構應用於DNA檢測之電化學特性zh_TW
dc.titleElectrochemical properties of nano-hemisphere array and its application on DNA nanobiosensoren_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.