Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2842
標題: 奈米生醫感測晶片應用於電化學A-beta(1-42)蛋白質檢測
Electrochemical impedance spectroscopy measurement of A-beta(1-42) protein using a nanostructure biochip
作者: 邱俊喆
Chiu, Chun-Che
關鍵字: A-beta(1-42)蛋白質;electrochemical impedance spectroscopy (EIS);生醫感測晶片;EIS;自組裝單層膜;等效電路;anodic aluminum oxide (AAO);A-beta(1-42) peptide;Alzheimer disease (AD);nanostructured biosensor
出版社: 機械工程學系所
引用: [1] http://www.who.int/zh/ [2] K. Islam, Y.-C. Jang, R. Chand, S. K. Jha, H. H. Lee, and Y.-S. Kim, "Microfluidic Biosensor for-Amyloid (1-42) Detection Using Cyclic Voltammetry," Journal of Nanoscience and Nanotechnology, vol. 11, pp. 5657-5662, 2011. [3] R. Brookmeyer, S. Gray, and C. Kawas, "Projections of Alzheimer''s disease in the United States and the public health impact of delaying disease onset," American journal of public health, vol. 88, pp. 1337-1342, 1998. [4] Esteban, J. A., Living with the enemy: a physiological role for the beta-amyloid peptide. Trends Neurosci 2004, 27 (1), 1-3. [5] Y. Chen, Z. Tian, Z. Liang, S. Sun, C.-l. Dai, M. H. Lee, F. M. LaFerla, I. Grundke-Iqbal, K. Iqbal, and F. Liu, "Brain Gene Expression of a Sporadic (icv-STZ Mouse) and a Familial Mouse Model (3xTg-AD Mouse) of Alzheimer’s Disease," PloS one, vol. 7, p. e51432, 2012. [6] G. B. Stokin, C. Lillo, T. L. Falzone, R. G. Brusch, E. Rockenstein, S. L. Mount, R. Raman, P. Davies, E. Masliah, and D. S. Williams, "Axonopathy and transport deficits early in the pathogenesis of Alzheimer''s disease," Science, vol. 307, pp. 1282-1288, 2005. [7] Haass, C., and D. J. Selkoe. 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid b-peptide. Nat. Rev. Mol. Cell Biol. 8:101–112. [8] B. J. Cummings and C. W. Cotman, "Image analysis of β-amyloid load in Alzheimer''s disease and relation to dementia severity," The Lancet, vol. 346, pp. 1524-1528, 1995. [9] A. Arora, C. Ha, and C. B. Park, "Inhibition of insulin amyloid formation by small stress molecules," FEBS letters, vol. 564, pp. 121-125, 2004. [10] N. Andreasen, L. Minthon, P. Davidsson, E. Vanmechelen, H. Vanderstichele, B. Winblad, and K. Blennow, "Evaluation of CSF-tau and CSF-A [1] 42 as Diagnostic Markers for Alzheimer Disease in Clinical Practice," Archives of Neurology, vol. 58, p. 373, 2001. [11] http://www.ddl.nl/biomarkers-alzheimers-disease [12] Burdick, D.; Soreghan, B.; Kwon, M.; Kosmoski, J.; Knauer, M.; Henschen, A.; Yates, J.; Cotman, C.; Glabe, C., Assembly and Aggregation Properties of Synthetic Alzheimers A4/Beta Amyloid Peptide Analogs. Journal of Biological Chemistry 1992, 267 (1), 546-554. [13] S. G. Younkin, "Evidence that Aβ42 is the real culprit in Alzheimer''s disease," Annals of neurology, vol. 37, pp. 287-288, 1995. [14] P. D. Mehta, T. Pirttila, S. P. Mehta, E. A. Sersen, P. S. Aisen, and H. M. Wisniewski, "Plasma and cerebrospinal fluid levels of amyloid {beta} proteins 1-40 and 1-42 in Alzheimer disease," Archives of Neurology, vol. 57, p. 100, 2000. [15] D. M. Walsh, I. Klyubin, J. V. Fadeeva, W. K. Cullen, R. Anwyl, M. S. Wolfe, M. J. Rowan, and D. J. Selkoe, "Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo," Nature, vol. 416, pp. 535-539, 2002. [16] Blennow, K.; de Leon, M. J.; Zetterberg, H., Alzheimer''s disease. Lancet 2006, 368 (9533), 387-403. [17] M. Lambert, A. Barlow, B. Chromy, C. Edwards, R. Freed, M. Liosatos, T. Morgan, I. Rozovsky, B. Trommer, and K. Viola, "Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins," Proceedings of the National Academy of Sciences, vol. 95, pp. 6448-6453, 1998. [18] D. J. Selkoe, "The cell biology of β-amyloid precursor protein and presenilin in Alzheimer''s disease," Trends in Cell Biology, vol. 8, pp. 447-453, 1998. [19] R. Vassar, B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J.-C. Louis, F. Collins, J. Treanor, G. Rogers, and M. Citron, "β-Secretase Cleavage of Alzheimer''s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE," Science, vol. 286, pp. 735-741, October 22, 1999 1999. [20] Cappai, R.; White, A. R., Amyloid beta. Int J Biochem Cell B 1999, 31 (9), 885-889. [21] Xing, Y. M.; Higuchi, K., Amyloid fibril proteins. Mech Ageing Dev 2002, 123 (12), 1625-1636. [22] Serpell, L. C., Alzheimer''s amyloid fibrils: structure and assembly. Biochimica Et Biophysica Acta-Molecular Basis of Disease 2000, 1502 (1), 16-30. [23] Lin, M. S.; Chen, L. Y.; Tsai, H. T.; Wang, S. S. S.; Chang, Y.; Higuchi, A.; Chen, W. Y., Investigation of the mechanism of beta-amyloid fibril formation by kinetic and thermodynamic analyses. Langmuir 2008, 24 (11), 5802-5808. [24] Stine, W. B.; Dahlgren, K. N.; Krafft, G. A.; LaDu, M. J., In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. Journal of Biological Chemistry 2003, 278 (13), 11612-11622. [25] Terzi, E.; Holzemann, G.; Seelig, J., Self-Association of Beta-Amyloid Peptide(1-40) in Solution and Binding to Lipid-Membranes. Journal of Molecular Biology 1995, 252 (5), 633-642. [26] Roher, A. E.; Chaney, M. O.; Kuo, Y. M.; Webster, S. D.; Stine, W. B.; Haverkamp, L. J.; Woods, A. S.; Cotter, R. J.; Tuohy, J. M.; Krafft, G. A.; Bonnell, B. S.; Emmerling, M. R., Morphology and toxicity of A beta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer''s disease. Journal of Biological Chemistry 1996, 271 (34), 20631-20635. [27] Gursky, O.; Aleshkov, S., Temperature-dependent beta-sheet formation in beta-amyloid A beta(1-40) peptide in water: uncoupling beta-structure folding from aggregation. Bba-Protein Struct M 2000, 1476 (1), 93-102. [28] L. C. Clark and C. Lyons, "ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY," Annals of the New York Academy of Sciences, vol. 102, pp. 29-45, 1962. [29] A. Ultnan, “An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly: An Overview,” Academic Press, San Diego in press (1991). [30] T. Ishida, M. Hara, I. Kojima, S. Tsuneda, N. Nishida, H. Sasabe, and W. Knoll, "High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au (111)," Langmuir, vol. 14, pp. 2092-2096, 1998. [31] S. Balasubramanian, A. Revzin, and A. Simonian, "Electrochemical desorption of proteins from gold electrode surface," Electroanalysis, vol. 18, pp. 1885-1892, 2006. [32] A. A. Ensafi, M. Taei, H. Rahmani, and T. Khayamian, "Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode," Electrochimica Acta, vol. 56, pp. 8176-8183, 2011. [33] K. Islam, Y.-C. Jang, R. Chand, S. K. Jha, H. H. Lee, and Y.-S. Kim, "Microfluidic Biosensor for -Amyloid(1-42) Detection Using Cyclic Voltammetry," Journal of Nanoscience and Nanotechnology, vol. 11, pp. 5657-5662, 2011. [34] M. Ammar, C. Smadja, L. Phuong, M. Azzouz, J. Vigneron, A. Etcheberry, M. Taverna, and E. Dufour-Gergam, "A new controlled concept of immune-sensing platform for specific detection of Alzheimer''s biomarkers," Biosensors and Bioelectronics, 2012. [35] N. Ida, T. Hartmann, J. Pantel, J. Schroder, R. Zerfass, H. Forstl, R. Sandbrink, C. L. Masters, and K. Beyreuther, "Analysis of heterogeneous βA4 peptides in human cerebrospinal fluid and blood by a newly developed sensitive Western blot assay," Journal of Biological Chemistry, vol. 271, pp. 22908-22914, 1996. [36] I. J. Yoon, H. S. Joo, W. T. Christianson, H. S. Kim, J. E. Collins, R. B. Morrison, and G. D. Dial, "An Indirect Fluorescent Antibody Test for the Detection of Antibody to Swine Infertility and Respiratory Syndrome Virus in Swine Sera," Journal of Veterinary Diagnostic Investigation, vol. 4, pp. 144-147, April 1, 1992 1992. [37] T. S. Meiron, A. Marmur, and I. S. Saguy, "Contact angle measurement on rough surfaces," Journal of Colloid and Interface Science, vol. 274, pp. 637-644, 2004. [38] J. Berna, "Macroscopic transport by synthetic molecular machines," Order, vol. 501, p. 942. [39] T. Ignat, M. Miu, I. Kleps, A. Bragaru, M. Simion, and M. Danila, "Electrochemical characterization of BSA/11-mercaptoundecanoic acid on Au electrode," Materials Science and Engineering: B, vol. 169, pp. 55-61, 2010. [40] M. Ammar, C. Smadja, L. Giang Thi Phuong, M. Azzouz, J. Vigneron, A. Etcheberry, M. Taverna, and E. Dufour-Gergam, "A new controlled concept of immune-sensing platform for specific detection of Alzheimer''s biomarkers," Biosensors and Bioelectronics, vol. 40, pp. 329-335, 2013. [41] K. Islam, Y.-C. Jang, R. Chand, S. K. Jha, H. H. Lee, and Y.-S. Kim, "Microfluidic biosensor for -amyloid(1-42) detection using cyclic voltammetry," 25650 North Lewis Way, Stevenson Ranch, California, 91381-1439, United States, 2011, pp. 5657-5662. [42] A. A. Ensafi, M. Taei, H. R. Rahmani, and T. Khayamian, "Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode," Electrochimica Acta, vol. 56, pp. 8176-8183, 2011. [43] 黃進益 “電化學的原理及應用”,高立圖書有限公司 1998 [44] P. T. Kissinger and W. R. Heineman, "Cyclic voltammetry," Journal of Chemical Education, vol. 60, p. 702, 1983/09/01 1983. [45] D. Savitri and C. K. Mitra, "Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements," Bioelectrochemistry and Bioenergetics, vol. 48, pp. 163-169, 1999. [46] A. B. Kharitonov, L. Alfonta, E. Katz, and I. Willner, "Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry," Journal of Electroanalytical Chemistry, vol. 487, pp. 133-141, 2000. [47] T. Kakiuchi, "Current—potential characteristic of ion transfer across the interface between two immiscible electrolyte solutions based on the Nernst—Planck equation," Journal of Electroanalytical Chemistry, vol. 322, pp. 55-61, 1992. [48] D. A. Noren and M. A. Hoffman, "Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models," Journal of Power Sources, vol. 152, pp. 175-181, 2005. [49] Y. Huang, M. C. Bell, and I. I. Suni, "Impedance Biosensor for Peanut Protein Ara h 1," Analytical Chemistry, vol. 80, pp. 9157-9161, 2008/12/01 2008. [50] Bard, Allen J.; Faulkner, Larry R., “Electrochemical Methods: Fundamentals and Applications,” JOHN WILEY & SONS, INC., New York, 2001 [51] F. Bordi, C. Cametti, and A. Gliozzi, "Impedance measurements of self-assembled lipid bilayer membranes on the tip of an electrode," Bioelectrochemistry, vol. 57, pp. 39-46, 2002. [52] E. Katz, L. Alfonta, and I. Willner, "Chronopotentiometry and Faradaic impedance spectroscopy as methods for signal transduction in immunosensors," Sensors and Actuators B: Chemical, vol. 76, pp. 134-141, 2001. [53] L. Yang, Y. Li, and G. F. Erf, "Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7," Analytical Chemistry, vol. 76, pp. 1107-1113, 2004/02/01 2004. [54] Iseki S, Ohashi K, Nagaura S. Electrochim Acta, 1972, 17:2249. [55] G.-J. Wang and C.-S. Peng, "Controlled porous pattern of anodic aluminum oxide by foils laminate approach," Journal of Nanoscience and Nanotechnology, vol. 6, pp. 1004-1008, 2006. [56] J. N. Rao and A. J. Scott, "On chi-squared tests for multiway contingency tables with cell proportions estimated from survey data," The Annals of Statistics, pp. 46-60, 1984. [57] R. A. Latham, "Algorithm development for electrochemical impedance spectroscopy diagnostics in PEM fuel cells," University of Victoria, 2004. [58] Y. Huang, M. C. Bell, and I. I. Suni, "Impedance biosensor for peanut protein Ara h 1," Analytical Chemistry, vol. 80, pp. 9157-9161, 2008. [59] J. A. Lee, S. Hwang, J. Kwak, S. I. Park, S. S. Lee, and K.-C. Lee, "An electrochemical impedance biosensor with aptamer-modified pyrolyzed carbon electrode for label-free protein detection," Sensors and Actuators B: Chemical, vol. 129, pp. 372-379, 2008. [60] A. Amirudin and D. Thieny, "Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals," Progress in Organic Coatings, vol. 26, pp. 1-28, 1995. [61] H. Lin, R. Bhatia, and R. Lal, "Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology," The FASEB Journal, vol. 15, pp. 2433-2444, 2001.
摘要: 
A-beta (1-42)蛋白質是診斷阿滋海默症的其中一個生物標記(biomarker)。常見的定量血液中A-beta(1-42)蛋白質平台包括ELISA以及Western blot,但若要先期診斷阿滋海默之患病率,長時間(數十年)、連續性的追蹤此一蛋白質含量之變化有其必要性;若使用上述之檢測平台長期追蹤血液中蛋白質濃度,除了檢測成本較為昂貴以外,分析流程繁雜且費時。另一方面,現有檢測技術也需要經過訓練之專業人員才有辦法進行操作和分析,因此無法在地方社區或偏遠地區進行檢測與長期追蹤。
因此,本研究成功利用3D奈米半球型生醫感測晶片搭配電化學阻抗分析(electrochemical impedance spectroscopy,EIS)技術計算出A-beta(1-42)蛋白質濃度對照阻抗值(ΔRct)的標準曲線,以達到快速檢測蛋白質含量之效果。首先製作奈米結構陽極氧化鋁膜(AAO),接著在表面濺鍍一層金導電層以取代平面感測區域,並利用電化學法沉積大小約為10nm之金顆粒於AAO模板上,藉以再次提升感測表面積,製作出一奈米生醫感測晶片。
接著,為了驗證A-beta(1-42)抗體抗原的專一性,本研究使用西方墨點法予以證實,且利用電化學檢測(循環伏安法及阻抗分析法)及其他量測方法(水滴接觸角、XPS及螢光顯微鏡),驗證自我組裝單層膜確實有修飾生醫感測晶片表面的效果。同時建立符合此電極界面物理意義之等效電路模型,定量檢測A-beta(1-42)蛋白質;而藉此等效電路配合EIS,發現A-beta(1-42)蛋白質於高濃度下有聚集情況,之後以計時安培法以及表面分析儀(AFM、SEM)探討此一現象。本研究結合等效電路模型與阻抗分析技術,以drop method的方式滴入30μl之A-beta(1-42)抗原於感測晶片快速量測,其檢測濃度區域為1pg/ml~10ng/ml。

A-beta (1-42) peptide is one of the possible candidate to predict Alzheimer’s disease. In this study, we demonstrate an EIS based nanostructured biosensor, with uniformly deposited GNPs as the sensing electrode, for effective detection of A-beta (1-42) peptide. An anodic aluminum oxide (AAO) layer with a nanohemisphere array was used as the substrate. A gold thin-film was sputtered onto the AAO substrate to serve as the electrode for GNP deposition and sensing for A-beta (1-42) peptide. A-beta (1-42) antibody was prepared and was verified the specificity with A-beta (1-42) peptide by western blot. We also observed the aggregation of A-beta (1-42) peptide when the concentration is 1 μg/ml. The morphology of A-beta (1-42) was in the form of round aggregations with around 1500-2000 nm diameter. Electrochemical impedance spectroscopy (EIS) measurement for nanostructured biosensors is used to screen the concentration of A-beta (1-42) peptide. The plot for the dependence of EIS concentration measurement resulted in an equation y=29098x+90150 with R2 of 0.9916. The linear detection range existed between 1pg/ml to 10ng/ml of A-beta (1-42).
URI: http://hdl.handle.net/11455/2842
其他識別: U0005-2908201300222300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.