Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2843
標題: 對有干擾之前饋式主動噪音控制的最佳可變步階演算法之推導與應用
Development and Application of Optimal Variable Step-Size NLMS Algorithms in Feedforward Active Noise Control Subject to Disturbance
作者: 羅運達
Lo, Yun-Ta
關鍵字: 主動噪音控制;active noise control (ANC);不相關干擾;最佳步階;可變步階;uncorrelated disturbance;optimal step size;variable step size
出版社: 機械工程學系所
引用: [1] Lueg, P., “Process of Silencing Sound Oscillations,” U.S. Patent, No.2043416, 1936. [2] Widrow, B. and Hoff, M.E., “Adaptive Switching Circuits,” IRE WESCON Conv. Rec, part4, pp. 96-104, 1960. [3] Burgess, J.C., “Active Adaptive Sound Control in a Duct: A Computer Simulation”, Journal of the Acoustical Society of America, Vol. 70, pp. 715-726, 1981. [4] Kuo, S.M., and Morgan, D.R., Active Noise Control Systems: Algorithms and DSP Implementations, 605 Third Avenue, New York, 10158-0012, 1996. [5] Elliott, S.J., Signal Processing for Active Noise Control, London, U.K.: Academic, 2001. [6] Liao, C.W., and Lin, J.Y., “New FIR filter-based adaptive algorithm incorporating with commutation error to improve active noise control performance”, Automatica, Vol. 43, pp. 325-331, 2007. [7] Kuo, S.M., and Ji, M., “Passband disturbance reduction in periodic active noise control systems”, IEEE Transactions on Speech and Audio Processing, Vol. 4, pp. 96-103, 1996. [8] Sun, X., and Kuo, S.M., “Active Narrowband Noise Control Systems Using Cascading Adaptive Filters” IEEE Transactions on Speech and Audio Processing, Vol. 15, pp. 586-592, 2007. [9] Akhtar, M.T., and Mitsuhashi, W., “Improving Performance of Active Noise Control Systems in the Presence of Uncorrelated Periodic Disturbance at Error Microphone,” IEEE Transactions on Speech and Audio Processing, Vol. 4, pp. 2041-2044, 2009. [10] 簡家安,可變步階的串聯演算法於主動噪音控制系統之應用,國立中興大學機械工程研究所,碩士論文,2010 [11] Kwong, R.H., and Johnston, E.W., “A Variable Step Size LMS Algorithm,” IEEE Transactions on Signal Processing, Vol. 40, pp. 1633-1642, 1992. [12] Mader, A., Puder, H., and Schmidt, G.U., “Step-size control for acoustic echo cancellation filters – an overview,” Signal Processing, Vol. 80, pp. 1697-1719, 2000. [13] Shin, H. C., Sayed, A. H., and Song, W. J., “Variable Step-Size NLMS and Affine Projection Algorithms,” IEEE Signal Processing Letters, Vol. 11, pp. 132-135, 2004. [14] Aboulnasr, T., and Mayyas, K., “A Robust Variable Step-size LMS-type Algorithm: Analysis and Simulations,” IEEE Transactions on Signal Processing, Vol. 45, pp. 631–639, March 1997. [15] Zou, K., and Zhao, X., “A New Modified Robust Variable Step Size LMS Algorithm,” Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference, pp. 2699-2703, 2009 [16] Qin, J.F., and Ouyang, J.Z., “A New Variable Step Size Adaptive Filtering Algorithm,” Journal of Data Acquisition& Processing, Vol. 12, pp.171-194, 1997 [17] Gao, Y. and Xie, S.L., “A Variable Step Size LMS Adaptive Filtering Algorithm and Its analysis,” ACTA Electronica Sinica, Vol. 29, pp. 1094-1097, 2001 [18] Shao, W., Yu, Y., and Qian, Z., “An Effective Variable Step Size CS-LMS Algorithm for Adaptive Beamforming,” IEEE Signal Processing Systemn, Vol. 1, pp. 416-419, 2010 [19] Feng, C., Zhang, L., and Hui, X.P., “A New Adaptive Filtering Algorithm Based on Discrete Wavelet Transforms,” IEEE Image and Signal Processing, Vol. 7, pp. 3284-3286, 2010 [20] Li, N., Zhang, Y.G., Hao, Y.L., Chambers, J.A., “A new variable step-size NLMS algorithm designed for applications with exponential decay impulse responses,” Signal Processing, Vol. 88, Issue 9, pp. 2346-2349, 2008. [21] Liu, J.C., Yu, X., and Li, H.R., “A nonparametric variable step-size NLMS algorithm for transversal filters,” Applied Mathematics and Computation, Vol. 217, pp. 7365-7371, 2011 [22] Mayyas, K., and Momani, F., “An LMS adaptive algorithm with a new step-size control equation,” Journal of the Franklin Institute, Vol. 348, pp. 589-605, 2011. [23] Carini, A., and Malatini, S.,“Optimal Variable Step-Size NLMS Algorithms With Auxiliary Noise Power Scheduling for Feedforward Active Noise Control",IEEE Transactions on Audio, Speech, and Langue Processing, Vol. 16 , pp.1383-1395, 2008 [24] Sun, X., and Chen, D.S., “A New Infinite Impulse Response Filter-Based Adaptive Algorithm For Active Noise Control”, Journal of Sound and Vibration, Vol. 258, pp. 385-397, 2002. [25] 黃靜宜,狹帶延遲類神經網路於主動噪音控制之應用,國立中興大學機械工程研究所,碩士論文,2006。
摘要: 
在主動噪音控制系統應用中,適應性濾波器的權重更新會受到誤差麥克風量取到的不相關噪音影響,導致系統的消音性能下降。另外,現有的可變步階適應性演算法普遍存在步階函數之參數選取問題。若參數的選取不佳,控制系統的控制性能會大幅降低。然而,參數通常僅能倚靠經驗法則選取,因而降低了使用上的方便性。因此,本篇論文提出以最佳可變步階(Optimal Variable Step-Size, OVSS),搭配NFxLMS/CE_DC演算法做為有干擾之前饋式主動噪音控制演算法。此演算法步階函數之參數選取個數較少,使用上較為方便;且因干擾補償器的設計,而能在有干擾的情況下仍能有良好的性能。與既有方法的電腦模擬比較結果可知,應用本文方法在主動噪音控制系統中,有較好的消音性能與強健性。

In the application of active noise control (ANC) system, weights update of an adaptive filter will affected by disturbance picked up by the error microphone, leading to the degradation of system performance. In addition, the existing adaptive Variable Step-Size(VSS) algorithms usually have commonly issue in selection of Step-Size function parameters. If the parameter selection is poor, the control performance of the control system will be substantially reduced. However, the selections of parameters are usually only rely on the rule of thumb, leading to the use of the inconvenience. Therefore, this paper proposed Optimal Variable Step-Size (OVSS) with NFxLMS/CE_DC Algorithms to the control algorithms, which reducing the number of algorithm parameters selection, more convenient to use; because of the design of Disturbance Compensator(DC), further enhance the adaptability of the system on the main noise source. Computer simulation shows that the proposed method has better performance and robustness as compared to that of existing methods.
URI: http://hdl.handle.net/11455/2843
其他識別: U0005-2408201203375800
Appears in Collections:機械工程學系所

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-7099061040-1.pdf1.76 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.