Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2844
標題: 工具機主軸組裝公差分析與調配之探討
An Investigation on The Analysis and Adjustment of Assembly Tolerance for A Machine Tool Spindle
作者: 吳尚融
Wu, Shang-Rung
關鍵字: 公差;Tolerance
出版社: 機械工程學系所
引用: [BjØrke, 1989] O. BjØrke, Computer-Aided Tolerancing, 2nd ed. ASME Press, 1989. [Chase & Guo, 1999] J.-B. Chase and B. Guo, “Accuracy on the Mechanical Assembly,” Journal of Forklift Truck Technology, v1, 1999, pp.5-7. [Cheng & Tsai, 2005] J.-C. Tsai and K.-M Cheng, “Cost-Effective Tolerance Allocation for Machining Processes,” Proceedings of the CIRP 2005 International Seminar on Computer-Aided Tolerancing, pp.2004-68. [Clement et al, 1991] A. Clement, A. Desrochers and A. Riviere, “Theory and Practice of 3D Tolerancing for Assembly,” Proceedings of the 2nd CIRP International Working Seminar on Computer Aided Tolerancing, 1991, pp. 325-341. [Creveling, 1997] C. M. Creveling, Tolerance Design, Addison-Wesley, New York ,1997. [Diplaris & Sfantsikopoulos, 2000] S.-C. Diplaris and M.-M. Sfantsikopoulos, “Cost-Tolerance Function: A New Approach for Cost Optimum Machining Accuracy,” International Journal of Advanced Manufacturing Technology, Vol. 16, Issue 1, 2000, pp.32-38. [Greenwood & Chase, 1987 ] W.-H. Greenwood and K.-W. Chase, “A New Tolerance Analysis Method for Designers and Manufactures,” Journal of Engineering for Industry, No. 109, 1987, pp.112-116. [He, 1991] J.-R. He, “Tolerancing for Manufacturing via Cost Minimization,” International Journal of Machine Tools Manufacturer, Vol.31, 1991, pp.455-470. [Jeang, 2001] A. Jeang, “Combined Parameter and Tolerance Design Optimization with Quality and Cost,” Intenational Journal of Production Research, Vol. 39, No. 5, 2001, pp.923-952. [Jeevanantham et al, 2007] S.-M. Jeevanantham, A.-K. Kannan and V. Jayabalan, “Modelling and Analysis of Selective Assembly Using Taguchi''s Loss Function,” International Journal of Production Research, v46, n15, 2007, pp.4309-4330. [Kannan et al, 2003] S. Kannan, V. Jayabalan and K. Jeevanantham, “Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly,” International Journal of Production Research, v41, n14, 2003, pp.3301-3313. [Knappe, 1963] L.-F. Knappe, “A Technique for Analyzing Mechanism Tolerances,” Machine Design, 1963, p115-157. [Moore, 1966] R.-E. Moore, Interval Analysis, Englewood Cliffs, Prentice-Hall, 1966. [Ponnambalam, 2003] S.-G. Ponnambalam, “Parallel Populations Genetic Algorithm for Minimizing Assembly Variation in Selective Assembly,” 62th International Conference on Automation Science and Engineering, v7, n10, 2006, pp.496-500. [Ramani et al., 1998] B. Ramani, S. H. Cherachi and J. M. Twomey, “CAD-Based integrated tolerancing system,” International Journal of Production Research, Vol.36, No.10,October, 1998, pp.2891-2910. [Riveire et al,1997 ] A. Riveire, A. Clement and C. Valade, “The TTRS: 13 Oriented Constraints for Dimensioning, Tolerancing and Inspection,” Advanced in Mathematics for Applied Sciences, Vol. 45, 1997, pp.24-42. [Tsai, 1996 ]J.-C. Tsai, “Geometric Tolerance Analysis for Mechanism Design,” Proceedings of the 1996 ASME Design Engineering Technical Conferences and Computer in Engineering Conference, 1996, 96-DETC/DAC-1053. [Tsai et al, 1995 ] J.-C. Tsai, D.-N. Guo, and K.-D. Cheng, “Variational Kinematic Models for Geometric Tolerances and Fittings,” Proceedings of 4th National Applied Mechanisms and Robotics Conference, 1995, Vol. II, AMR95-107. [Tsai & Wang, 2001 ] J.-C. Tsai & W.-W. Wang, “Development of a Computer-Aided Tolerancing System in CAD Environment,” in F. van Houten & H. Kals Eds. Global Consistency of Tolerances, 2001, pp.47-54, Kluwer Academic Publishers. [Wade, 1967] O.-R. Wade, Tolerance Control in Design and Manufacturing, Industrial Press, New York, 1967. [Wang, 2008] J. Wang, “Application of Grouping Method in Manufacture of Rotary Vane Compressor for Automobile Air Conditioner,” Refrigeration and Air Conditioning, v8, n4, 2008, pp.74-75. [Whitney & Gilbert, 1993] D. E. Whitney and O. L. Gilbert, “Representation of Geometric Variations Using Matrix Transformation for Statistical Tolerance Analysis,” Proceedings of IEEE International Conference on Robotics and Automation, 1993, Vol.2, pp.314-321. [段明揚,1989] 段明揚,“修配法解裝配尺寸鏈分析”,機械工程學報,第25卷第1期,1989。 [蔡志成&鄭國德,1995]蔡志成、鄭國德,“區間與統計公差正逆向四則運算方法之發展”,中國機械工程學會第十二屆學術研討會論文集(設計與製造),1995,731-740頁。 [侯靖男,1996]侯靖男,公差分析與公差敏感度分析在產品設計之應用,國立中興大學機械工程研究所碩士論文,1996。 [石進名,1997]石進名,機械加工線性公差分析與製程合理化研究,國立中興大學機械工程研究所碩士論文,1997。 [蕭志峰,2001] 蕭志峰,具尺寸公差之方型工件最低成本製程規劃研究,國立中興大學機械工程學系碩士論文,2001 [王曉慧,2002] 王曉慧 “關於虛公差問題的研究”,製造技術與機床,2002。 [沈劍英,2003] 沈劍英,“虛公差現象及其探討”,機械研究與應用,第16卷第4 期,2003。 [朱益伸,2007]朱益伸,工具機主軸公差分析與調整方法探討,國立中興大學機械工程研究所碩士論文,2007。 [廖國生&王曉慧,2007] 廖國生、王曉慧,“廣義公差及其應用”,農業機械學報,第38卷第1期,2007。 [戴君豪,2009] 戴君豪,以公差為限制之分組選配方法,國立中興大學機械工程研究所碩士論文,2009。 [蔡志成等人,2010]蔡志成、黃政德、陳正達與張恩生,2010,“車削中心主軸組裝精度之變異分析與公差調配”,機械工業,第324期,98-104頁。 [王正青,2012]王正青,“2012年1-3月台灣機械產品進出口速報”,機械資訊月刊,2012年四月。
摘要: 
公差技術是產品品質與成本的指標,而主軸為工具機中最重要的關鍵組件,故其公差設計配置與分析極為重要。本研究針對龍門型加工機使用之滑移式主軸(Ram type spindle),分析其組裝之精度,進一步在製造成本考量下調整公差配置以滿足設計之精度。研究透過主軸系統之產品架構、零件分解與公差網路,分析主軸系統組裝所對應之公差累積造成之精度變異,因組裝累積之精度變異過大,經ISO IT6精度等級之公差配置後,組裝累加之精度變異仍超過設計目標,故更進一步以等公差、等公差比例、等精度等方法重新調配零件公差,但仍面臨無法達成設計目標的困難,故研究最後以負公差設計來吸收組裝公差累積,以達成組裝精度要求。文中亦比較各種公差調整配置之加工成本,顯示該主軸透過扣環的負公差調配,除可適度吸收組裝的精度變異,滿足設計目標之外,調配後之加工成本也較低。本研究之主要貢獻在於探討以不同方式調整零件公差之可行性,並應用新發展之“負公差”方式重新配置零件公差,以達成設計之目標但同時維持較低之加工成本。

Tolerance technology is an important index of product quality and cost. While spindle is the most important component of a machine tool, its tolerance design and analysis are therefore critical. This research is aimed to the analysis and adjustment of assembly tolerances of a ram type spindle used in a double-column vertical machine tool. Analysis of tolerance stack-up of the assembly is first analyzed. As the accumulated tolerance is far beyond the design target, tolerance adjustment based on these analyses is further conducted to meet the target. Tolerance analysis is conducted with product hierarchy and tolerance network to analyze the accumulated tolerance after assembly. As the assembly tolerance of the original design is over the design target, tightening component tolerance with ISO IT6 precision is employed to reduce the accumulated tolerance. The result, however, is still unable to meet the target, tolerances are then re-distributed by “equal tolerance”, “equal dimensional ratio” and “equal precision” approaches with comparison of manufacturing cost. The cost of the above approaches, though achievable, are relatively high, a new approach, called the “negative tolerancing” is employed for adjusting the assembly tolerance with an adjustable dimension that compensates tolerance accumulation and results in acceptable tolerance target with relatively low manufacturing cost. The contribution of this thesis is to investigate various tolerance adjustment approaches and use the newly developed “negative tolerancing” approach to achieve design target with low manufacturing cost.
URI: http://hdl.handle.net/11455/2844
其他識別: U0005-2708201213043200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.