Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2845
標題: 工具機傳動系統機電整合設計及循跡精度分析
Mechatronic Design and Tracking Accuracy Analysis of Feed-Drive System of Machine Tool
作者: 王智能
Wang, Chih-Neng
關鍵字: SERVO GUIDE;SERVO GUIDE;KAKINO;AICC;HRV3;高速高精度;KAKINO;AICC;HRV3;High-speed;high- accuracy
出版社: 機械工程學系所
引用: 【1】. M. H. Smith, A. M. Annaswamy, and A. H. Slocum,“Adaptive control strategies fora precision machine tool axis” ,Precision Engineering Research Group, Department of MechanicalEngineering, Massachusetts Institute of Technology, Cambridge, MA, USA,Precision Engineering 17:192-206, 1995 【2】. 唐肇蔚,“伺服運動平台效能調校最佳化研究”,國立台灣科技大學機械工程系碩士學位論文,2007 【3】. T. S. Tsay, H. C. Chen , andZdk. W. Han,“Stability-equation Method for MultivariableFeedback Control Systems with Lead/LagCompensators”,Journalof the Franklin InstitutePergamon Journals Ltd.2007 【4】. Kristofer Smeds, Xiaodong Lu,“Effect of sampling jitter and control jitter on positioning error in motion control systems”, Department of Mechanical Engineering, University of British Columbia, Canada, Precision Engineering 36 (2012) 175– 1928 【5】. Kristofer Smeds, Xiaodong Lu,“Feed-system autotuning of a CNC machining center: Rapid system identification and fine gain tuning based on optimal search”, Department of Mechanical Engineering, Sogang University,Precision Engineering 36 (2012) 339– 348 【6】. K.H. Kim,P.J. Kim,K.H. You,“Ultra-precision positioning system using robust sliding mode observer and control”,Dept. of Electrical Engr., Sungkyunkwan University,Suwon, South Korea,Precision Engineering 37 (2013) 235– 240 【7】. Suk-Hwan Suh, Eung-Suk Lee, and Jin-Wook Sohn,“Enhancement of Geometric Accuracy via an Intermediate Geometrical Feedback Scheme”, Journal of Manufacturing Systems Vol. 18/No. 1 1999 【8】. K.K. Tan, K.Z. Tang, H.F. Dou, and S.N. Huang,“Development of an integrated and open-architecture precision motion control system”, Control Engineering Practice 10 (2002) 757–772 【9】. Xie Donga, Zhu Jian-qub, and Wang Fengb,“Fuzzy PID Control To Feed Servo System of CNC Machine Tool”, Procedia Engine Engineering 29 (2012) 2853 – 2858 【10】. Tony L. Schmitz , John C. Ziegert, J. Suzanne Canning, and Raul Zapata,“Case study: A comparison of error sources in high-speed milling” ,a University of Florida, Gainesville, FL, United StatesbClemson University, Clemson, SC, United Statesc BWXT Y-12, Oak Ridge, TN, United States,Precision Engineering 32 (2008) 126–133 【11】. 蘇金發,“立式綜合加工機主軸進給滑台之線性滑軌位置最佳化設計之研究”,國立高雄第一科技大學機械與自動化工程系碩士論文,2007 【12】. Yu-che Chen, Jiri Tlusty,“Effect of Low-Friction Guideways and Lead-Screw Flexibilityon Dynamics of High-speed Machines” ,University of Florida, USAReceived on January 6,1995,Annals of the ClRP Vol. 44/1/1995 【13】. Tony Schmitza, John Ziegertb,,“Dynamic evaluation of spatial CNC contouring accuracy”,aAutomated Production Technology Division, Manufacturing Engineering Laboratory, National Institute of Standards and Technology,Gaithersburg, Maryland,bDepartment of Mechanical Engineering, University of Florida, Gainesville, Florida,Precision Engineering 24 (2000) 99–118 【14】. 夏恆泰,“CNC工具機加工性能最佳化系統之研究與開發”,中原大學機械工程學系碩士學位論文,2004 【15】. 鄭世傑,“CNC工具機控制參數最佳化調校之研究” ,中原大學機械工程學系碩士學位論文,2004 【16】. 李明樺,“CNC工具機智能化複合功能之研究”,中原大學機械工程學系碩士學位論文,2006 【17】. 林昆鋒,“CNC運動控制器之軟體整合開發與模擬”,國立成功大學機械工程學系碩士學位論文,2004 【18】. 陳慶盈、李文昊、程啟正,“工具機進給系統控制器參數之調整”,第三屆精密機械製造研討會論文集,台灣‧高雄國立中山大學機械與機電工程學系,2003 【19】. 賴永祥,“工具機高速進給系統之循跡精度分析”,國立中正大學機械工程研究所碩士論文,1999 【20】. 張吉村,“數控工具機伺服參數之調校”,逢甲大學材料與製造工程研究所碩士論文,2007 【21】. 張惠滿,“高精度工具機伺服控制器之剛性強韌分析”,國立臺灣大學機械工程學研究所,2001 【22】. B. Bringmann,W. Knapp, “Machine tool calibration: Geometric test uncertainty depends onmachine tool performance”,Institute of Machine Tools and Manufacturing, ETH Zurich, Tannenstr. 3, 8055 Zurich, Switzerland,Precision Engineering 33 (2009) 524–529 【23】. KoichiroIwasawaa,AkitoIwamaa, andKimiyuki Mitsu,“Development of a measuring method for several types of programmedtool paths for NC machine tools using a laser displacementinterferometer and a rotary encoder”,a Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan,Precision Engineering 28 (2004) 399–408 【24】. H. D. Kwon , M. Burdekint,“Development and application of a system for evaluating thefeed-drive errors on computernumerically controlledmachine tools” ,*Production and System Engineering Centre, Korea Academy ofIndustrial Technology (KAITECH), Seoul, Korea, andDepartment of Mechanical Engineering, University of Manchester Instituteof Science and Technology (UMIST), Manchester, UK,Precision Engineering 19:133-140, 1996 【25】. H.L. Liua, H.M. Shia, B. Lia, and X. Lia,“A new method and instrument for measuring circular motionerror of NC machine tools” ,aNational CNC Control System Research Center, Mechanical Department, Huazhong University of Science and Technology, Wuhan 430074, China bZhanjiang Ocean University, Zhanjiang, Guangdong 524025, China,International Journal of Machine Tools & Manufacture 45 (2005) 1347–1351 【26】. 黃駿達,“平行式工具機精度校驗分析與CNC工具機之體積誤差與輪廓誤差電腦輔助檢測系統之研發” 中原大學機械工程學系碩士學位論文,2005 【27】. 黃柏翰,“插補與控制器參數調校之研究” 國立中正大學機械工程學系暨研究所,2012 【28】. 黃泓緯,“智慧型加工控制系統之研發” 國立中正大學機械工程學系暨研究所,2011 【29】. 曾旨煜,“開發具有小線段擬合NC插補器” 國立中正大學機械工程學系暨研究所,2008 【30】. 顏仲良,“開發具有反覆學習控制演算法之高精度CNC運動控制器” 國立中正大學機械工程學系暨研究所,2012 【31】. Yoshiake Kakino, Kazutak Akimoto,"Measurement of Contouring Motion Accuracy of The NC Machine Tools by the Cross Grid Encoder Test", Japan/USA Symposium on Flexible Automation,Vol.2,ASME 1996
摘要: 
工具機開發人員於開發時往往只注重到結構剛性,而忽略了電控與機械結構的匹配問題,只能在開發機組裝完成後,才能測試出伺服與機械結構匹配問題,而本論文的研究目的即是利用機電整合模組,在機械開發產出之前輸入傳動系統及機體剛性相關參數,即可模擬出其循跡精度及振動狀況,做為開發的參考及修正的依據。
首先依據L公司卧式MH-630機台所需達到的性能來計算出相關零組件的規格,進一步依據這些計算參數,建立進給機構動態模型再加入控制器模組、以做為循跡精度路徑模擬的機電整合模型。並利用Heidenhain KGM Grid Encoder作為測試路徑量測,分別以1.未調機前(標準參數)。2.高速&高精度調整(伺服)調整完畢,未開啟AICC+HRV3。3.高速&高精度調整(伺服)調整完畢,開啟AICC+HRV3。3個條件分別作循圓及KAKINO的測試,來與進給機構動態機電模型模擬出來的路徑作比較,比較在不同參數下的循跡精度的誤差。
利用Matlab程式撰寫FANUC的插補器,建立插補器的用意,是建立一套可模擬加工路徑及調整參數的系統,來分析不同參數對於循跡路徑的影響,此模擬可在實際加工前,模擬出輪廓的大約誤差值,可依此誤差來調整相關參數,以期達到工具機開發初期的修正参考。由於此動態模型不考慮前饋效應及電流迴路,所以相關參數比較精簡,在求解過程中,較容易有解析解。調整相關參數後把循跡路徑輸入simulink的機電模型中,透過X及Y軸兩組不同的模型,模擬出具兩軸負載、機械柔性及機電匹配的整合系統運動路徑,其模擬出來的路徑與KGM量測結果相同,由此可以判定此機電模型是可正確的模擬出傳動系統循跡精度。
由本論文結果得知,工具機傳動系統的循跡精度,是可以在開發之前以機電模組來調整參數,模擬出循跡精度,也可由此判斷出是結構共振是由伺服或是機械結構產生,解決工具機廠長久以來的問題,結構共振或伺服共振的爭議。

When designing a new frame body, developers of machine tools often emphasize only the rigidity of structure but neglect the compatibility between the controller and the structure of the frame body. The compatibility problem can only be diagnosed after the frame body is assembled. Therefore, the purpose of this study is to use a mechatronic module to simulate the path of resonance by calculating the operating parameter of the transmission system. Therefore, the rigidity can be determined before the body is produced. Then , the simulated contouring accuracy and vibrations will be the reference for the development and operation.
First, get the specifications of the related components of the MH-630 Horizontal Machining Center. Next, build a model of the feed mechanical module in the form of an electromechanical model, designed to follow the machining accuracy , with a structure model and the controller module by the counting parameter. We use a Heidenhain KGM Grid Encoder to test the length of measurement and display three conditions- 1. before debugging (standard parameter), 2. after debugging at high speed and accuracy(servo) without the AICC+ HRV3 turned on, 3. after debugging at high speed and accuracy(servo) and with the AICC+HRV3 turned on. All of the three are tested for circular motion and KAKINO. The test results are compared with the model of the feed dynamic module so that we can find the errors in contouring accuracy under different parameters.
The interpolator for FANUC is developed with Matlab formula. The interpolator builds a system which can simulate the cutting path and resets parameters in order to analyze the effects of the different parameters on the contouring paths. The system simulates the deviation values of the contour in order to debug the related parameters and get revised references for the machine tools in the beginning of development.
The dynamic module doesn’t consider the feedforward effect and circuit current so solutions are easily found during the trouble shooting process. After debugging related parameters, contouring paths are entered into the Simulink electromechanical model and simulate two motional paths of the integrated system. They are compared for accuracy and mechanical flexibility with the mechatronic module, through the models with their different X and Y axises. The path of the simulation is similar to the result of the KGM measurement. Therefore, the electromechanical model is capable to simulate the contouring accuracy of the transmission system correctly. From this study, we know that the contouring accuracy of the transmission system could be debugged with an electromechanical model by adjusting the parameters (through the adjustment of the parameter.) We can also determine whether the servo or the structure of the frame body produces the structural resonance. (The structural resonance which is produced from the servo and the structure of the frame body.) The incompatibility between the structural resonance in the frame body and servo will be solved.
URI: http://hdl.handle.net/11455/2845
其他識別: U0005-0908201322305300
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.