Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2851
標題: 微型共平面熱電發電器之研製
Fabrication of in-plane thermoelectric microgenerators
作者: 彭世瑋
Peng, Shih-Wen
關鍵字: 熱電偶;thermocouple;熱電發電器;CMOS-MEMS;thermoelectric generator;CMOS
出版社: 機械工程學系所
引用: [1] http://www.narl.org.tw/tw/topic/topic.php?topic_id=17 [2] http://e-info.org.tw/issue/energy/2000/sub-energy00103101.htm [3] http://www.epson.jp/device/semicon_e/product/at/ [4] 陳尚謙,準單晶碲化鉍奈米線和薄膜的熱電性質研究,國立政治大學理學院應用物理研究所碩士論文,2011。 [5] 柯賢文,熱電轉換及其應用,科技發展政策報導,2007。 [6] C. H. Du and C. K. Lee, “Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining,” Japanese Journal of Applied Physics Part 1: Regular Papers and Short Notes and Review Papers, vol. 41, no. 6 B, pp. 4340-4345, 2002. [7] G. J. Snyder, J. R. Lim, C. K. Huang and J. P. Fleurial, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process,” Nature Materials, vol. 2, no. 8, pp. 528-531, 2003. [8] I. Yasuhiro and T. Masatoshi, “Development of flexible thermoelectric device: improvement of device performance,” International Conference on Thermoelectrics, pp. 562-565, 2006. [9] D. T. Crane and L. E. Bell, “Progress towards maximizing the performance of a thermoelectric power generator,” International Conference on Thermoelectrics, pp. 11-16, 2006. [10] L. Vladimir, T. Tom, F. Paolo and V. H. Chris, “Thermoelectric converters of human warmth for self-powered wireless sensor nodes,” IEEE Sensors Journal, vol. 7, no. 5, pp. 650-656, 2007. [11] N. Kockmann, T. Huesgen and P. Woias, “Microstructured in-plane thermoelectric generators with optimized heat path,” 4th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 133-136, 2007. [12] T. Huesgen, P. Woias and N. Kockmann, “Design and fabrication of MEMS thermoelectric generators with high temperature efficiency,” Sensors and Actuators A: Physical, vol. 145-146, no. 1-2, pp. 423-429, 2008. [13] A. Yadav, K. P. Pipe and M. Shtein, “Fiber-based flexible thermoelectric power generator,” Journal of Power Sources, vol. 175, no. 2, pp. 909-913, 2008. [14] L. E. Aime, V. Giuseppe, T. Amerigo and M. Gabriella, “Thermoelectric generator design based on power from body heat for biomedical autonomous devices,” 2009 IEEE International Workshop on Medical Measurements and Applications, pp. 1-4, 2009. [15] V. Leonov and R. J. M. Vullers, “Wearable thermoelectric generators for body-powered devices,” Journal of Electronic Materials, vol. 38, no. 7, pp. 1491-1498, 2009. [16] Z. Wang, V. Leonov, P. Fiorini, C. V. Hoof, “Realization of a wearable miniaturized thermoelectric generator for human body applications,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp. 95-102, 2009. [17] C. K. Lee and J. Xie, “Development of vacuum packaged CMOS thermoelectric,” 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 803-807, 2009. [18] J. Su, V. Leonov, M. Goedbloed, Y. V. Andel, M. C. D. Nooijer, R. Elfrink, Z. Wang and R. J. M. Vullers, “A batch process micromachined thermoelectric energy harvester: fabrication and characterization,” Journal of Micromechanics and Microengineering, vol. 20, no. 10, 2010. [19] H. B. Lee, H. J. Yang, J. H. We, K. Kim, K. C. Cho, and B. J. Cho, “Thin-film thermoelectric module for power generator applications using a screen-printing method,” Journal of Electronic Materials, vol. 40, no. 5, pp. 615-619, 2011. [20] 何鍵宏,熱電效應的應用,儀科中心簡訊73期,2006。 [21] T. Toriyama, M. Yajima and S. Sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 562-565, 2001. [22] K. Itoigawa, H. Ueno, M. Shizaki, T. Toriyama and S. sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Journal of Micromechanics and Microengineering, vol. 15, no. 9, pp. 233-238, 2005. [23] P. Li, L. Cai, P. C. Zhai, X. F. Tang, Q. J. Zhang and M. Niino, “Design of a concentration solar thermoelectric generator,” Journal of Electronic Materials, vol. 39, no. 9, pp. 1522-1530, 2010. [24] M. Strasser, R. Aigner, M. Franosch and G. Wachutka, “Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining,” Sensors and Actuators A: Physical, vol. 97-98, pp. 535-542, 2002. [25] 工業材料雜誌,「電子構裝材料」及「熱電發電」技術專題,286期十月號出刊。 [26] I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen and J. S. Kuo, “Development of low-cost micro-thermoelectric coolers utilizing MEMS technology,” Sensors and Actuators A: Physical, vol. 148, no. 1, pp. 176-185, 2008. [27] S. M. Yang, T. Lee and C.A. Jeng, “Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS proces,” Sensors and Actuators A: Physical, vol. 153, no. 2, pp. 244-250, 2009. [28] 洪俊榆,低驅動電壓之可調變微帶通濾波器,中興大學碩士論文,2007。 [29] I. Boniche, S. Masilamani, R. J. Durscher, B. C. Morgan , D. P. Arnold, “Design of a miniaturized thermoelectric generator using micromachined silicon substrates,” Journal of Electronic Materials, vol. 38, no. 7, pp. 1293-1302, 2009. [30] I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen and J. S. Kuo, “Development of low-cost micro-thermoelectric coolers utilizing MEMS technology,” Sensors and Actuators A: Physical, vol. 148, no. 1, pp. 176-185, 2008. [31] S. M. Yang, T. Lee and M. Cong, “Design and verification of a thermoelectric energy harvester with stacked polysilicon thermocouples by CMOS process,” Sensors and Actuators A: Physical, vol. 157, no. 2, pp. 258-266, 2010. [32] H. S. Han, Y. H. Kim, S. Y. Kim, S. Um and J. M. Hyun, “Performance measurement and analysis of a thermoelectric power generator,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2010. [33] D. T. Crane, J.W. Lagrandeur, F. Harris and L.E. Bell, “Performance results of a high-power-density thermoelectric generator: beyond the couple,” Journal of Electronic Materials, vol. 38, no. 7, pp. 1375-1381, 2009. [34] K. Itoigawa, H. Ueno, M. Shizaki, T. Toriyama and S. sugiyama, “Fabrication of flexible thermopile generator,” Journal of Micromechanics and Microengineering, vol. 15, no. 9, pp. 233-238, 2005. [35] 莊達人,VLSI製造技術,高立圖書有限公司,2000。 [36] 黃信瀚,新型PVDF壓電獵能器之設計分析與實驗研究,成功大學碩士論文,2009。 [37] 林聖傑,混合式微獵能器之概念設計分析與巨觀的實驗驗證,成功大學碩士論文,2008。 [38] http://pemclab.cn.nctu.edu.tw/W3news/技術專欄/【2008-12-18】直流—直流轉換器:電源設計的基礎/直流—直流轉換器:電源設計的基礎.htm [39] I. Doms, P. Merken and C. Van Hoof, “Comparison of DC-DC-converter Architectures of PowerManagement Circuits for Thermoelectric Generators,” 2007 European Conference on Power Electronics and Applications, EPE, 2007.
摘要: 
本研究利用標準0.35μm 2P4M CMOS製程製作微型熱電發電器,微型熱電發電器由200組熱電偶串聯構成,熱電偶之結構尺寸設計為長度130 μm及0.275 μm厚之結構,並利用標準製程中的多晶矽層,透過摻雜形成p-type與n-type熱電偶。微型熱電發電器的發電效率,取決於熱電偶冷熱兩端的溫度差,因此為了防止熱散失,保持溫度梯度,使用反應性離子蝕刻(RIE)蝕刻熱端熱電偶周圍之犧牲層,並於熱端熱電偶堆疊金屬板,增加熱端部分的吸熱面積;冷端熱電偶埋藏於二氧化矽層中,利用其低熱導率特性隔絕外部熱源。利用Coventor-Ware與ANSYS模擬內部溫度分佈與受到環境溫度變化時,產生的溫度梯度變化。經模擬計算微熱電發電器於溫差15 K時,輸出電壓為4.2 mV與輸出功率為551.25 nW,由實驗結果顯示,微型熱電發電器具有4.5 mV的輸出電壓及578.9 nW的輸出功率於溫度差15 K;電壓因子為39.438 mV/K/cm2以及功率因子為403.97 nW/K2/cm2,並藉由外加升壓轉換電路,將串聯五組的微型熱電發電器之輸出電壓,由0.3 V提升至電容中之2.125 V,再經由蓄電電路之整合,將微型熱電發電器所產生之電能儲存,此電壓已可供應於較低驅動電壓之電子元件。

A micro thermoelectric power generator fabricated by the standard 0.35 μm 2P4M (two polysilicon and four metals) CMOS (complementary metal oxide semiconductor) process was studied. The micro thermoelectric power generator is composed of 200 thermocouples in series, and the thermocouples are formed by p-type and n-type polysilicons. The dimensions of the thermocouples are 130 μm length and 0.275 μm thick, which can generate the maximum output power. In order to achieve the best thermoelectric generation efficiency, the hot-end is formed by the stacked and metals that are suspended by RIE etching, the cold-end is covered with a low thermal conductivity silicon dioxide layer to insulate the heat source. The CoventorWare and ANSYS are employed to simulate the temperature distribution of the thermoelectric generator. The simulation showed that the micro generator had an output voltage of 4.2 mV and an output power of 551.25 nW at the temperature difference of 15 K. Experiments depicted that the output voltage and output power of the micro generator were 4.5 mV and 578.9 nW, respectively, as the temperature difference was 15 K. The voltage factor of the micro generator was 39.438 mV/K/cm2 and its power factor was 403.97 nW/K2/cm2. Finally, the charging circuit is designed to carry out the output power storage. This work applied in the low power electrinic component.
URI: http://hdl.handle.net/11455/2851
其他識別: U0005-2706201209062500
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.