Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2852
標題: 微定位平台之性能模擬與分析
Simulation and Analysis Performance of a Micro-Positioning Stage
作者: 林駿逸
Lin, Chun-Yi
關鍵字: 微定位平台;micro-precision positioning stage;一體機構;壓電致動器;撓性結構;flexural structure;monolithic mechanism;piezoelectric actuator
出版社: 機械工程學系所
引用: [1] 井澤實,杜光中編譯,精密定位技術及設計技術,建宏出版社,1995。 [2] T. Oiwa, and T. Sugimoto,“Shape Optimization for Flexure Hinges,”精密工學會誌,Vol. 63, No. 10, 1997, pp. 1454-1458. [3] M. Patrascu, and S. Stramigioli, “Stick-slip Actuation of Electrostatic Stepper Micropositioners for Data Storage-the μwalker,” Proceeding of the 2005 International Conference on MEMS, NANO and Smart Systems, July24-27, 2005, pp. 81-86. [4] P. E. Tenzer, and R. B. Mrad, “A Systematic Procedure for the Design of Piezoelectric Inchworm Precision Positioners,” IEEE/ASME Transactions on Mechatronics, Vol. 9, No. 2, June 2004, pp. 427- 435. [5] Z. Gong, H. L. Ho, G. Yang, and W. Lin, “Experimental-model-based Precision Control of a Piezoelectric Actuated Flexure Stage,” Proceeding of the International Conference on Automation Science and Engineering, August 1-2, 2005, pp. 124~129. [6] J.M. Paros, and L. Weisbord,, “How to Design Flexure Hinge”, Machine Design, Vol. 37 , November, 1965, pp. 151-156. [7] Q. Xu and Y. Li, “Mechanical Design of Compliant Parallel, Micromanipulators for Nano Scale Manipulation”, Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 18 - 21, 2006, pp. 653-657. [8] S. Awtar and G. Parmar, “Design of a large range XY nanopositioning system”, Proceedings of the ASME 2010 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August 15-18, 2010, pp. 28185-1~28185-13. [9] P. Gao, S.-M. Swei, and Z. Yuan, “A New Piezo-driven Precision Micropositioning Stage Utilizing Flexure Hinges,” Nanotechnology, 1996, Vol. 10, pp. 394–398. [10] A.T. Elfizy , G.M. Bone and M.A. Elbestawi , “Design and Control of a Dual-Stage Feed Drive,” International Journal of machine Tools and Manufacture ,Vol. 45, 2005, pp. 153–165. [11] 李一民,六自由度微定位平台之設計與分析,碩士論文,國立中興大學機械系研究所,中華民國九十五年六月。 [12] 張善岳,六軸微定位平台之設計與分析,碩士論文,國立興大學機械學系研究所,中華民國九十七年七月。 [13] R. F. Fung and W. C. Lin, “System Identification of a Novel 6-Dof Precision Positioning Table”, Sensors and Actuators, A: Physical, Vol. 150, No. 2,March 2009, pp. 286-295. [14] 尹國嬌,精微定位平台之設計與分析,碩士論文,國立中興大學機械系研究所,中華民國九十九年一月。 [15] 陳燕銘,微定位平台之設計與分析,碩士論文,國立中興大學機械系研究所,中華民國一○○年一月。 [16] Y.B. Bang, K. Lee, and S. Oh, “5-Axis micro milling machine for machining micro parts,” Advanced Manufacturing Technology, vol.25, pp.888-894, 2005. [17] J. S. Wang, Y. D. Gong, G. Abba, K. Chen, J. S. Shi, G. Q. Cai, “Surface generation analysis in micro end-milling considering the influences of grain,” Microsyst Technol, 14, pp. 937–942, 2008. [18] S. Filiz, M. Conley, B. Wasserman, O. Ozdoganlar, “An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills,” International Journal of Machine Tools & Manufacture, 47, pp. 1088-1100, 2007. [19] Rusnaldy, T. J. Ko, H. S. Kim, “An experimental study on microcutting of silicon using a micromilling machine,” Int J Adv Manuf Technol, 39, pp. 85-91, 2008. [20] B. H. Kang, J. T. Y. Wen, N. G. Dagalakis, and J. J. Gorman, “Analysis and Design of Parallel Mechanisms with Flexure Joints,” IEEE Transactions on Robotics,Vol. 21, No. 6, December 2005, pp. 1179-1185. [21] Physik Instrumente, Micropositioning,Nanopositioning, Nano-automation, 2001. [22] D. Stewart, “A Platform with Six Degrees of Freedom,” Proceedings Institution of Mechanical Engineers, Vol. 180, No. 1, 1965, pp. 371–386. [23] Y. K. Yong, T. F. Lu and D. C. Handley, “Review of Circular Flexure Hinge Design Equations and Derivation of Empirical Formulations”, Precision Engineering ,Vol. 32, No. 2, April 2008, pp. 63-70. [24]Y. K. Yong and T. F. Lu, “The Effect of the Accuracies of Flexure Hinge Equations on the Output Compliances of Planar Micro-motion Stages”, Mechanism and Machine Theory, Vol. 43, No. 3, March 2008, pp. 347-363. [25] Y. K. Yong and T. F. Lu, “Kinetostatic Modeling of 3-RRR Compliant Micro-motion Stages with Flexure Hinges”, Mechanisms and Machine Theory, Vol. 44 , No. 6, June 2009, pp. 1156-1157 [26] N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, 2003. [27] National Instruments, “NI 632x Specifications,”2009. [28] http://sine.ni.com/nips/cds/view/p/lang/zht/nid/203223 [29] 李俊明,微型刀具刀尖三維空間位置與刀徑光學量測系統開發,碩士論文,國立虎尾科技大學光電與材料科技研究所,中華民國九十七年七月。 [30] 陳奕全,微型刀具線上檢測系統開發,碩士論文,國立虎尾科技大學光電與材料科技研究所,中華民國九十九年七月。
摘要: 
本研究之目的為對精密微定位平台進行理論、模擬以及實驗的重新推導,探討六自由度之微定位平台其各線性軸向之最大位移量以及各軸間藕合的現象。平台採用壓電材料為驅動源,並配合撓性結構設計,整體設計乃為一體機構、無需組裝並且為同一平面。
本論文的研究步驟主要可分為四個階段,(1)定位平台基本原理探討、(2)定位平台的模型建立、(3)定位平台的有限元素模擬分析、(4)定位平台的實體驗證。針對定位平台的撓性結構進行分析其對平台所造成的自由度、靜態與動態特性,最後將理論分析與ANSYS有限元素分析、實驗的結果互相比較誤差,藉以驗證理論分析的正確性,並經由實體實驗量測出平台尺寸為150mm×150mm×45mm,在X方向之最大位移為36.584 μm、Y方向之最大位移為14.918 μm、θ之最大旋轉量為213.26 μrad;在Z方向之最大位移為7.472 μm、ψ之最大旋轉量為106.38 μrad、φ之最大旋轉量為122.24 μrad。最小步階實驗之X方向為0.119 μm、Y方向為0.038 μm、θ方向為1.287 μrad;在Z方向為0.024 μm、ψ方向為0.502 μrad、φ方向為0.379 μrad。

The purpose of this study is to investigate the theory, stimulation, and the reconstruction experiment of micro-positioning stage. Explore displacement and coupling of micro-precision positioning stage as 6 degree-of-freedom. The micro-positioning stage is a monolithic mechanism and use flexure hinge and piezoelectric actuator.
The procedures of this research are divided into the following four steps: (1) fundamental theory study; (2) mathematical model analysis; (3) finite element analysis; and (4) experimental verification. A conceptual design for the positioning stage is conducted according to functional requirements verification in the first beginning. L-shaped flexure hinges are then designed. Mathematical model of this stage is developed, and followed by finite element analysis. Finally, experiments are conducted to verify the design. The actual dimension of the positioning stage is 150 mm × 150 mm × 45 mm. From the experiment results, it shows that the stage can achieve a maximum displacement of 36.584 μm in X axis, 14.918 μm in Y axis and 7.472 μm in Z axis. The stage can also achieve a maximum rotation of 213.26 μrad around Z axis, 106.38 μrad around X axis and 122.24 μrad around Y axis. The minimum step of 0.119 μm in X axis, 0.038 μm in Y axis, 1.287 μrad around Z axis, 0.024 μm in Z axis, 0.502 μrad around X axis and 0.379 μrad around Y axis.
URI: http://hdl.handle.net/11455/2852
其他識別: U0005-2208201212571000
Appears in Collections:機械工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.