Please use this identifier to cite or link to this item:
標題: 感應電能傳輸超音波振動輔助主軸之諧振追蹤研究
A Study of Inductive Power Transfer Ultrasonic Vibration Assisted Spindle With Resonance Frequency Tracking
作者: 呂仲哲
Lu, Chung-Che
關鍵字: 諧振追蹤系統;Resonance frequency tracking system;共振頻率飄移;超音波振動輔助主軸;感應電能傳輸;the resonant frequency drift;ultrasonic vibration assisted spindle;inductive power transfer
出版社: 機械工程學系所
引用: [1]Y.S. Liao, Y.C. Chen and H.M.Lin,“Feasibility study of the ultrasonic assisted drilling of Inconel superalloy, ” International Journal of Machine Tools and Manufacture, Vol.47, 2007, pp.1988-1996 [2]C.Y. Zhao, H.Gong, F.Z.Fang and Z.J.Li,“Experimental study on the cutting force difference between rotary ultrasonic machining and conventional diamond drinding of K9 glass, ”Machining Science and Technology, Vol.17, No.1, 2013, pp.129-144 [3] [4]隈部淳一郎,''精密加工振動切削基礎的應用'',實教出版株式會社,1979 [5]V.N. Podurear Podurear,“Increasing the efficiency of vibratory drilling by active coolants, ” , Russian Engg. J., Vol.46,1996 [6]D.Y. Zhang and L. Wang,“Investigation of chip in vibration drilling, ” Inter- national Journal of Machine Tools & Manufacture, Vol.38, No.3, 1998, pp.165-176 [7]D.Y. Zhang, X.J.Feng, L.J.Wang and D.C. Cheng,“Study on the drill skidding motion in ultrasonic vibration microdrilling,”International Journal of Machine Tools & Manufacture, Vol.34, No.6, 1994, pp.847-857 [8]楊兆軍,王立江,王立平,''變振幅振動鑽削提高爲小孔入鑽定位精度的硏究'',吉林工業大學學報,Vol.25,1995,pp.27-32 [9]L.J. Wang, Z.J. Yang and L.P. Wang,“Study on variable parameter vibration drilling of microholes,”Zhongguo Jixie Gongcheng/China Mechanical Engineering, Vol.5, No.5, 1994, pp.50 [10]L.P. Wang, S.Z. Yang, H.W.Zhao and L.J.Wang,“Investigation on improving the accuracy of drilling microvoid through varying-parameters-vibration drilling, Journal of Hydraulic Engineering, No.10, 1998, pp.3-5 [11]Z.J. Li, M.S. Hong, L.J. Wang and H.W. Zhho,“Vibration drilling of micro holes, ” Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, Vol.34, No.10, 2000, pp. 1347-1350 [12]J.D. Kim and I.H. Choi,“Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics, ” Journal of Materials Processing Technology, Vol. 68, No.1, 1997, pp.89-98 [13]C. Ma, E. Shamoto, T. Moriwaki and L. Wang,“Study of machining accuracy in ultrasonic elliptical vibration cutting, ” International Journal of Machine Tools and Manufacture, Vol. 44, Issues 12-13, 2004, pp. 1305-1310 [14]J.T. Boys and A.W. Green, “Inductively coupled transmission– concept, design and Application, ” IPENZ Trans, Vol. 22, 1995, pp.1-9 [15]J. Hirai,T.W. Kim and A. Kawamura, “Study on crosstalk in inductive transmission of power and information, ” IEEE Trans. Ind. Electron, Vol.46, No.6, 1999, pp.1174-1182 [16]Y. Wu,L. Yan and S. Xu,“A new contactless power delivery system, ”Electrical Machines and Systems, Vol.1, 2003, pp.253-256 [17]C.S. Wang, O.H. Stielau and G.A.Covic, “Design considerations for a contactless electric vehicle battery charger, ”IEEE Transactions on Industrial Electronics, Vol. 52, Nol.5, 2005, pp.1308-1314 [18]羅志宏,''具負載與間距偵測之非接觸式供電系統'',國立中央大學電機工程研究所碩士論文,2006 [19]萬泰麟,''非接觸式感應充電技術應用於小家電裝置之研究'',國立成功大學電機工程研究所碩士論文,2007 [20]C.T. Xia,C.W. Li and J.Zhang, “Analysis of power transfer characteristic of capacitive power transfer system and inductively coupled power transfer system, ”2011 International Conference on Mechatronic Science, Electric Engineering and Computer, 2011, pp.1281-1285 [21]V.I. Babitsky,A.N. Kalashnikov and F.V. Molodtsov, “Auto- resonant control of ultrasonically assisted cutting, ” Mechatronics, Vol. 14, No.1, 2004, pp.91-114 [22]范仲達,''超音波輔助鑽削之研究'',國立臺灣大學機械工程研究所,碩士論文,2004 [23]J. Xu, E.Grant, A.I. Kingon, J.M. Wilson and P.D. Franzon, “Drive circuit for a mode conversion rotary ultrasonic motor, ”IEEE Ind. Electron.Soc., 2005, pp.1588-1592 [24]J. Meins, F. Turki, and R. Czainski, “Phase control of resonant power supply inverters, ”Power Electronics and Applications, 2005, pp.1-7 [25]S.C. Rho, S.H. Kim, Y.H. Ahn and B.Kim, “A study on power transmission system using resonant frequency tracking method and contactless transformer with multiple primary winding, ”International Conference on Electrical Machines and Systems, 2007, pp.1635-1639 [26]邱俊翔,''非接觸式感應饋電技術應用於鎳鎘電池充電之研究'',國立成功大學電機工程研究所,碩士論文,2007 [27]Q. Li, L. Zhu and F. Wang, “Design of ultrasonic generator based on DDS and PLLtechnology, ”High Density packaging and Microsystem Integration, 2007, pp.1-4 [28]S. Voronina, V. Babitsky and A. Meadows, “Modelling of autoresonant control of ultrasonic transducer for machining applications, ”Journal of Mechanical Engineering Science, Vol. 222, No.10, 2008, pp.1957-1974 [29]S. Judek and K. Karwowski, “Supply of electric vehicles via magnetically coupled air coils, ”Power Electronics and Motion Control Conference, 2008, pp.1497-1504 [30]K.H. Ma, W.C. Chang and Y.C. Lee, “A frequency-tracking FPGA chip for high-power ultrasound resonator, ”Information and Control Innovative Computin, 2009, pp.1409-1411 [31]W. Fu, B. Zhang and D. Qiu, “Study on frequency-tracking wireless power transfer system by resonant coupling, ”IEEE Power Electronics and Motion Control Conference, 2009, pp.2658-2663 [32]黃鴻斌,''追頻式超音波輔助攻牙之研究'',國立台北科技大學車輛工程研究所,碩士論文,2009 [33]張宇誠,''具封閉型耦合結構非接觸式感應供電軌道之研究'',國立成功大學電機工程研究所,碩士論文,2009 [34]陳建任,''具多鐵芯感應結構非接觸式油電混合車充電槳之研究'',國立成功大學電機工程研究所,碩士論文,2009 [35]D.J. Thrimawithana and U.K. Madawala, “A primary side controller for inductive power transfer systems, ”IEEE Ind. Tech., 2010, pp.661-666 [36]H.J. Dong, J. Wu, G.Y. Zhang and H.f. Wu, “An improved phase-locked loop method for automatic resonance frequency tracing based on static capacitance broadband compensation for a high-power ultrasonic transducer, ”IEEE Trans. Ultrs.Ferro.Fre., Vol.59, No.2, 2012, pp.205-209 [37]Y. Wang, M.J. Draper, S.M. Denley, F.V.P. Robinson and P.R. Shepherd, “Control scheme evaluation for class-D amplifiers in a power-ultrasonic system, ”Power Electronics, Machines and Drives, 2012, pp.1-6 [38]W. Zhou and D. Zhang, “Research and development of ultrasonic frequency dual closed-loop control tracking system based on the ST2 and phase inspection circuit, ”2012 Third International Conference on Digital Manufacturing & Automation, 2012, pp.638-641 [39]L.R. Chen, H.W. Chang, C.H. Wu, C.M. Young and N.Y. Chu, “Voltage controllable power factor corrector based inductive coupling power transfer system, ”IEEE Ind. Electron., 2012, pp.582-587 [40]G.Q. Dong, L. Song, Z.X. Yang, and Z.X. Xiao, “Research and application on the frequency automatic tracking of ultrasonic power based on DSP, ”2012 Inter- national Conference on Advanced Mechatronic Systems, 2012, pp.478-481 [41]Z. Yao, Z.N. Guo, Y.J. Zhang, Y. Deng and W.T. Zhang, “Research on the Frequency Tracking in Rotary Ultrasonic Machining, ”Proceedings of the Seventeenth CIRP Conference on Electro Physical and Chemical Machining, Vol. 6, 2013, pp.557-561 [42]賴佳欣,2013,中心加工機超音波切斷刀把,中華民國專利 [43]洪宗彬,林世楨,林惠萍,呂育廷,2012,振動加工裝置,中華民國專利 [44]陳建智,2012,超音波非接觸式電力傳輸加工裝置,中華民國專利 [45]蘇金發,陳馨寶,郭文傑,2012,具高頻振動的刀把及工具機,中華民國專利 [46]簡志賢,陳勇彰,陳芃瑞,賴居弦,2012,具電力傳輸之刀軸與刀把結構,中華民國專利 [47]Hilti Aktiengesellschaft, 2004, Device with ultrasound adapter,United states patent [48]Okesaku Masahiro, 2006, Ultrasonic precision machining device, Japanese Patent [49]Hermann Sauer, 2008,tool with an oscillating head, United states patent [50]Ohnishi, 2008, Cutting or grinding device, World Intellectual Property Organization [51]李永勳譯,''超音波工學'',偉明圖書有限公司,2002 [52]郭昱辰,''刀具參數對於超音波振動輔助切削刀把動態特性變化之研究'',國立中興大學機械工程研究所,碩士論文,2012 [53]賴耿陽,''電磁學'',復文書局,2005 [54]鄭湧誠 ,''感應電能傳輸技術運用於超音波振動輔助切削工具之開發'',國立中正大學機械工程研究所,碩士論文,2011 [55]杜明育,''非接觸式線性感應供電軌道之研究'',國立成功大學電機工程研究所,碩士論文,2007 [56]鄭振東,''實用磁性材料'',第二章,全華科技圖書公司,民國88年6月 [57]張宗文,''陣列鐵芯結構應用於非接觸式手機充電平台之研究'' ,國立成功大學電機工程研究所,碩士論文,2007 [58]D.K. Cheng, Field and Wave Electromagnetics. 2nd ed. , Addison-Wesley, 1989. [59]N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors, ”in Proc. IEEE PESC, Vol. 2, 2003, pp. 853-860 [60]G.Q. Dong, L. Song and Z.X. Yang, “Research and application on the frequency automatic tracking of ultrasonic power based on DSP, ”2012 International Conference on Advanced Mechatronic Systems, 2012, pp.478-481 [61] [62]H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems, ” in Proc. PowerCon., 2000, vol.1, pp.85-90 [63]J. Pi and X.P. Xu, “Design of integration tool-holder system for ultrasonic vibration machining using contactless inductive power transfer, ”Advanced Materials Research, Vol.69-70, 2009, pp. 520-524 [64]HEF4046 Dataheet,Philips Semiconductors Inc.,1995 [65]LA55-P Dataheet,LEM [66]周雯琪,''感應耦合電能傳輸系統的特性與設計研究'',國立浙江大學應 用電子研究所博士論文,2008 [67]賴耿陽,''超音波工學理論實務'',復和出版社,2001 [68]謝沐田,''高低頻變壓器設計'',全華科技圖書股份有限公司,2005 [69]梁適安,''高頻交換式電源供應器原理與設計'',全華科技圖書股份有限公司,1999 [70]劉深淵、楊清淵,''鎖相迴路'',滄海書局,2006 [71]何中庸,''振盪電路之設計與應用'',全華科技圖書股份有限公司,1999 [72]郭宗勳 ,''具共振頻率偵測功能之超音波振動輔助切削頭研究'',國立中正大學機械工程研究所,碩士論文,2010 [73]施景翔 ,''超音波振動輔助切削之共振頻率偵測追蹤電路之研究'',國立中正大學機械工程研究所,碩士論文,2006 [74]蔡秉勳,''相位偵測電路在相關係數法主軸線上動平衡之實現'',國立中正大學機械工程研究所,碩士論文,2006 [75]C.S. Wang, Oskar H.Stielau and Grant A.Covic “Load models and their application in the design of loosely coupled inductive power transfer systems, ”Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on, 2000, vol.2, pp.1053-1058
最後在有線電能傳輸實驗結果顯示,供應電壓為166 V_rms(輸入功率達10 W),其刀具前端可產生最大振幅約16 um、共振頻率為26030 Hz,與設計目標28000 Hz,其誤差為7.1 %;而在感應電能傳輸系統,氣隙設計為0.2 mm,利用加工過的罐型鐵芯及線料選用線徑0.5 mm和50匝,感應電能傳輸效率僅達27.9 %(次級側接受功率達7.51 W)且刀把振幅約15 um、共振頻率26040 Hz。而加入補償電路與諧振電路感應電能傳輸效率可達35 %(次級側接受功率達8 W)且刀把振幅約16 um、共振頻率26030 Hz;由實驗得知,在兩線圈相同時,分別為20匝、30匝、40匝、50匝和60匝,隨著不同氣隙下作電能傳輸,匝數越多時不會隨著氣隙不同而較不易造成共振頻率漂移,對於共振頻率追蹤技術,可減少共振頻率漂移現象。
本論文受限於鐵芯圓槽尺寸,最多僅能放置50匝,但用在0.1 mm~0.2 mm氣隙是足夠的。如果氣隙必須加大時,則增加線圈匝數即有相同的刀把振幅。另外線圈匝數從20匝到60匝,隨著氣隙越大時,匝數越大可防止共振頻率變化的能力越強。提昇電能傳輸效率方法,透過實驗驗證,有補償電路、線圈匝數越多以及線徑越小三種方法皆能提昇其傳輸效率。刀把振幅與供應電壓趨於線性關係,未來的控制器內可增加振幅控制模組,因而達到振幅選擇機制,在未來為改善目標。本文的補償電路針對單一工作頻率,未來必須搭配控制器所產生的頻率,因而調節相對應的初級側阻抗值,使得控制系統更加完善且更準確。

In this paper, we developed a resonant tracking frequency system to solve the resonance frequency drift phenomenon . Due to the inductive power transmission of ultrasonic vibration aided spindle, tool abrasion , cutting feed and inductive power transfer system overheat, all of these will make the resonance frequency drift shift, it might affect the tool amplitude doesn''t stay at the optimal cutting state will affect the machining quality and tool life and so on.
In ultrasonic vibration aided spindle design use the finite element analysis for simulate to get tool holder of ultrasonic vibration aided spindle and the best inductive structure. This paper we proposed the compensation circuit which can compensate the inductive power leakage generated by transmission phenomenon. In the system design, the feedback voltage was get from resonant circuit, at the last feedback voltage and feedback current has been entered to phase comparator for phase comparison.
By the voltage and current feedback phase comparator compare, when phase difference was zero with the current signal is the maximum value, the signal will sent into Labview for judging to pre-procedure frequency scanning module and dynamic frequency tracking module. Dynamic frequency tracking make the pre-procedure frequency scanning resonance frequency as reference. When the phase difference from 0� to 180� will activate the increasing the frequency scanning program.When the phase difference from 180� to 360�, will activate the decreasing the frequency scanning program until the processed stopped.Power amplifier and Labview generated by the frequency through the external voltage amplification, then enter the primary side circuit to achieve closed loop control.
In wire power transmission experimental results has shown when the voltage provided at 166 V_rms (input power up to 10 W), which can produce the maximum amplitude of the tool front about 16 um with resonance frequencies 26030 Hz. Compared with the ideal designed of resonance frequencies 28000 Hz the error was 7.1%. In inductive power transfer experiment, the air gap was 0.2 mm, the processed pot-type core and wire diameter 0.5 mm with 50 turns are selected for inductive power transfer system. The result had shown that Inductive power transfer efficiency is only reached 27.9% (secondary side has received power about 7.51 W) and the tool amplitude reached about 15 um with the resonance frequency 26040 Hz. When added the compensation circuit and the resonant circuit the inductive power transfer efficiency improvement to 35% (secondary side received power up to 8 W) and reached about 16 um of the tool amplitude with the resonance frequency 26030 Hz; From the experimental results has shown, when the both coils are without difference, more turns will reduce the resonance frequency drift generated by the air gap ,this effect can reduce the resonance frequency drift.
Our research was limited by the core circular groove dimensions, just only can place up to 50 turns, If the air gap have to increase in future as the bigger gap can be place more coil turn. With the bigger gap, will improve preventing the ability of resonant frequency change.Through from the experimental verification, to enhance the efficiency of power transmission methods was compensation circuit, more number of turns and the smaller diameter, all of these are the way to enhance transmission efficiency. Farther from the experiment verification and found tool and provided voltage amplitude has a linear relation, in the future we can design a controller for control the amplitude by control module, so as to achieve the optional of amplitudes tool. In this thesis the compensation circuit only for compensate a single frequency, in future will be Collocation with a frequency which generated by controller, thereby regulating the primary side of the corresponding impedance values, let the control system was more completed and more accurate.
其他識別: U0005-1707201317374900
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.