Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28596
標題: 數種台灣野生獼猴桃之性狀變異
Some character variations of native kiwifruit (Actinidia spp.) in Taiwan
作者: 范耀驊
Fan, Yau-Hua
關鍵字: kiwifruit;獼猴桃;dormancy;photosynthesis;休眠;光合作用
出版社: 園藝學系所
引用: 王曉東、段全猛。2006。軟棗獼猴桃的利用與栽培。特種經濟動植物2006:33-34。 司家鋼。1995。高溫脅迫對大白菜耐熱性相關生理指標的影響。中國蔬菜4:6-15。 吳國勝。1997。大白菜耐熱性遺傳效應研究。園藝學報24:141-144。 呂福原、歐辰雄。1994。台灣樹木誌。國立中興大學農學院。 李延韋、金育、韋濤。2004。中越獼猴桃地上部分抗腫瘤作用的實驗研究。Guangxi Medical Journal 26:164-166。 沈征言。1993。高溫對菜豆生育及不同基因型耐熱性差異。中國農業科學26:50-55。 周慧娜。1998。台灣獼猴桃果實發育與儲藏期間成分變化之研究。國立中興大學園藝研究所碩士論文。 林嘉興。1986。橫山梨與高接梨栽培管理技術。台灣省台中區農業改良場特刊。4。 苗深。1994。甘藍熱脅迫葉片細胞的超微結構研究。植物學報36:730-732。 倪正柱。1981。橫山梨果芽休眠及產期調節關係之研究。興大園藝6:50-60。 倪正柱。1994。梅雨對種植於台灣高山之獼猴桃開花著果之影響。中國園藝40:282-286。 梁疇芬。1983。論獼猴桃屬植物的分類。廣西植物3:229-248。 陳火英。1992。蘿蔔抗熱性鑒定技術。上海蔬菜3:15-16。 陳逸夫。2003。數種高接梨組合之光合作用與同化產物累積特性。國立中興大學生命科學系碩士論文。 黃宏文、龔俊杰、王聖梅。2000。獼猴桃屬(Actinidia)植物的遺傳多樣性。生物多樣性8:1-12。 陶愛麗、文禎中、闞雲超、鄧培淵。2005。獼猴桃屬植物研究進展。南陽師範學院學報4:56-59。 蔡巨才、康有德。1989。獼猴桃屬植物之性狀及分類(Ⅰ)。科學農業37:237-315。 廖容君、鄭皓元、林昆宏、吳金濱、彭文煌。2005。獼猴桃屬植物對四氯化碳誘發大鼠急性肝損傷之保護作用。中台灣醫學科學雜誌10(4):188-195。 蔡平里。1986。談獼猴桃之八-我國的獼猴桃屬植物。啟農雜誌34:12-15。 蕭嘉昌。2000。台灣原生獼猴桃的繁殖與選育。國立中興大學園藝系碩士論文。 韓笑冰。1997。熱脅迫下蘿蔔不同耐熱性品種細胞組織結構比較。武漢植物學研究15:173-178。 鐘彩虹、王中炎、卜範文。2005。獼猴桃紅心品種楚紅的選育。中國果樹2005:6-8。 Atkins, A. M. 1948. Introduction of Chinese gooseberry. The New Zealand Gardener 4:795. Bachelard, E., Wightman, F. 1973. Biochemical and physiological studies on dormancy release in tree buds. I. Changes in degree of dormancy, respiratory capacity, and major cell constituents in overwintering vegetative buds of Populus balsamifera. Can. j. bot. 12:2315-2326. Barton, K. A. and W. J. Brill. 1983. Prospects in plant genetic engineering. Science 219:671-676. Berry, J. and O. Bjorkman. 1980. Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annu. rev. plant physiol. 31:491-543. Blommaert, K. L. J. 1959. Winter temperature in relation to dormancy and the auxin and growth inhibitor content of peach buds. S. Afr. J. Agric. Sci. 2:507-514. Bogatek R., S. Lewak. 1991. Cyanide controls enzymes involved in lipid and sugar catabolism in dormant apple embryos during culture. Physiol. Plant. 83:422-426. Bohning, R. H., W. A. Kendall, and A. J. Linck. 1953. Effect of Temperature and Sucrose on Growth and Translocation in Tomato. Am. j. bot. 40(3):150-153. Boyer. J. S. 1982. Plant Productivity and Environment. Science 218:443-448. Brown, D. S. 1958. The relation of temperature to the flower bud drop of peaches. Proc. Amer. Soc. Hort. Sci. 71:77-87. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Ducea. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agric. for. meteorol. 126:1-13. Chaves, M. M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot. 42:1-16. Coimbra, S., L. Torrao, and I. Abreu. 2004. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant physiol. biochem. 42:537-541. Coville, F. V. 1920. The influence of cold in stimulating the growth of plants. J. Agr. Res. 20:151-160. Damesin, C. and S. Rambal. 1995. Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought. New phytol. 131(2):159–167. Dennis, F. G. Jr. 1987. Temperate zone fruits at low latitudes: opportunities for cooperation. Acta hortic. 199:15-18. Doorenbos, J. 1953. Review of the literature on dormancy in buds of woody plants. Meded. Landbouwhogeschool Wageningen. 53:1-24. Ducousso, A., J. P. Guyon, and A. Kremer. 1996. Latitudinal and altitudinal variation of bud burst in western populations of sessile oak (Quwecus petraea Marr Liebl). Ann. Sci. For. 53:775-782. Dunn, S. T. 1911. A revision of the genus Actinidia, Lindl. Journal of the Linnean Society of London, Botany 39:394-410. Edwards, G. R. and S. Notodimedjo. 1987. Defoliation, bending and tip pruning of apple under tropical conditions. Acta Hort. 199:125-127. Enamy, I., M. Kitamura, and T. Tato. 1994. Is the primary cause of thermal inactivation of oxygen evolution in spinach PS Ⅱ membranes release of the 33 kDa protein or of Mn ? Biochim. Biophys. Acta. 186:52-58. Erez, A. and S. Lavee. 1971. The effect of climatic conditions on dormancy development of peach buds.I. Temperature. J. Amer. Soc. Hort. Sci. 96:711-714. Escalona, J. M., J. Flexas, and H. Medrano. 1999. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines. Aust. j. plant physiol. 26(5):421-433. Ferguson, A. R. 1984. Kiwifruit: a botanical review. Hortic. rev. 6:1-64. Ferguson, A. R., A. G. Seal, M. A. McNeilage, L. G. Fraser, C. F. Harvey, and R. A. Beatson. 1996. Kiwifruit. In Janick, J., J. N. Moore (eds). Fruit breeding. 2:371-417. Ferguson, A. R. and E. G. Bollard. 1990. Domestication of the kiwifruit. In: Warrington I. J. and Weston G. C. ed. Kiwifruit: Science and Management. Auckland: Ray Richards Publisher in association with N. Z. Soc. Hort. Sci. 1:65-232. Ferree, D. C. 1978. Cultural factors influencing net photosynthesis of apple trees. HortScience. 13(6):650-652. Gilreath, P. R. and D. W. Buchanan. 1981. Rest prediction model for low-chilling Sungold nectarine. J. Am. Soc. Hort. 106:426-429. Goltsev, V., I. Yordanov, and T. Stoyanova. 1987. High temperature damage and acclimation of the photosynthetic apparatus Ⅱ. Effect of mono-and divalent cations and pH on the temperature sensitivity of some functional characteristics of chloroplasts isolated from heat-acclimated and non-acclimated bean plants. Planta. 170:478-488. Gounaris, K., A. R. P. Brain, and P. J. Quinn. 1984. Structural reorganisation of chloroplast thylakoid membranes in response to heat stress. Biochim. Biophys. Acta. 766:198-208. Guillaumin, A. 1940. Les Actinidia fruitieres. Bulletin Mensuel de la Societe Nationale d''Horticulture de France Ser. 6(7):64-65. Guillaumin, A. 1943. La souris vegetale (Actinidia chinensis). Source exceptionnellement riche en vitamine C. Revue Phytotherapie. 7:3-4. Hansche, P. E., C. O. Hesse, and V. Beres. 1972. Estimates of genetic and environmental effects on several traits in peach. Amer. Soc. Hort. Sci. J. 1:76-79. Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ. 16:461-467. Henry, A. 1887. Chinense names of plants. Journal of the China Branch of the Royal Asiatic Society. 22:233-283. Inaba, M. and P. Grandall. 1988. Electrolyte leakage as an indicator of high-temperature injury to harvested mature green tomatoes. J. Am. Soc. Hortic. Sci. 113:96-99. Janssen, P. 1992. Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula. Arch. microbiol. 157:442-445. Jordan, D. B. and W. L. Ogren. 1984. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta. 164(4):308-313. Klueva, N. Y., E. Maestri, N. Marmiroli, and H. T. Nguyen. 2001. Mechanisms of thermotolerance in crops. In AS Basra ed, Crop Responses and Adaptations to Temperature Stress. Food Products Press:177-217. Lakso, A. N. and E. J Seeley. 1978. Environmentally induced responses of apple tree photosynthesis. HortScience. 13(6):646-650. Lawes, G. S. and D. R. Anderson. 1980. Influence of temperature and gibberellic acid on kiwifruit (Actinidia chinensis) seed germination. N. Z. j. crop hortic. sci. 8:277-280. Li, H. L. 1952. A taxonomic review of the genus Actinidia. J. Arnold Arbor. 33:1-61. Liang, C. F. and A. R. Frguson. 1985. Revision of infraspecific taxa of Actinidia chinensis Planch. Guihaia. 5:71-72. Linsley-Noakes, G. C., M. Louw, and P. Allan. 1995. Estimating daily positive Utah chill units from maximum and minimum temperatures. J. S. Afr. Soc. Hort. Sci. 5:19-24. Marsh, L. E., D. W. Davis, P. H. Li. 1985. Selection and inheritance of heat tolerance in the common bean by use of conductivity. J. Am. Soc. Hortic. Sci. 110(5):680-683. McNeilage, M. A. 1997. Progress in breeding hermaphrodite kiwifruit cultivars and understanding the genetic of sex determination. Acta Hort. 444:73-78. Mowrey, B. D. and W. B. Sherman. 1986. Relationship between Autumn growth cessation and chilling requirement in peach. Fruit var. j. 40(1):24-28. Norvell, D. J. and J. N. Moore. 1982. An evaluation of chilling models for estimating rest requirements of highbush blueberries (Vaccinium corymbosum L.). J. Amer. Soc. Hort. Sci. 107:54-56. Peng, J. J. and F. Y. Lu. 1986. Actinidiaceae. In”Editorial Committee of the Flora of Taiwan. Flora of Taiwan. 2nd ed. Taipei, Taiwan:Publisher. 2:656-661. Phillips, J. D. J. 1975. Apical Dominance. Ann. Rev. Plant Physiol. 26:341-367. Raison, J. K., J. K. M. Roberts, J. A. Berr. 1982. Correlations between the thermal stability of chloroplast thylakoid membranes and the composition and fludity of their polar lipids upon acclimation of higher plant Nerium oleander to growth temperature. Bio-chim. Biophys. Acta. 668:218-228. Raison, J. K. and R. G. Hiller. 1980. The fluidity of chloroplast thylakoid membranes and their constituent lipids. A comparative study by ESR. Biochimica et biophysica acta. 599:63-72. Rice, W. H. 1929. Chinese gooseberry (Actinidia chinensis). Journal of the Royal New Zealand Institute of Horticulture 1:2-4. Richardson, E. A., S. D. Seeley, and D. R. Walker. 1974. A model for estimating the completion of rest for ''Redheaven'' and ''Elberta'' peach trees. HortScience. 9:331-332. Rundel, P. W. 1980. The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia. 45:354-359. Rusha, E., L. R. Fergusonb, and M. Cumina. 2006. Kiwifruit consumption reduces DNA fragility: a randomized controlled pilot study in volunteers. Nutr. res. 26:197-201. Rutler, J. M. and D. L. Ingram. 1990. 14Carbon-labeled photosynthate partitioning in Ilex crenata ''Rotundifolia'' at supraoptimal root-zone temperatures. J. Am. Soc. Hortic. Sci. 115(6):1008-1013. Sackman, E. 1983. Physical foundation of molecular organisation and dynamics of membranes. Biophysics, Ed. W. Hoppe, Springer, Berlin-Heidelberg: 425-457. Sargent, C. S. 1893. Notes on the forest flora of Japan.Ⅳ. Garden and Forest. 6:88-89. Saure, M. C. 1986. Dormancy release in deciduous fruit. Hort. Rev. 7. Sayed, O. H., M. J. Earnshaw, and M. J. Emes. 1994. Characterization of the heat-induced stimulation of photosystem-I-mediated electron transport. Acta bot. neerl. 43:137-143. Shaltout, A. D. and C. R. Unrath. 1983. Rest completion prediction model for ''Starkrimson Delicious'' apples. J. Amer. Soc. Hort. Sci. 108:957-961. Smith, R. L. and S. J. Toy. 1967. Effects of stratification and alternating temperatures on seed germination of the Chinese gooseberry, Actinidia chinensis Planch. Proc. Am. Soc. Hort. Sci. 90:409-412. Sundby, C., A. Melis, P. Maenpaa, and B. Andersson. 1986. Temperature dependent changes in the antenna size of photosystem Ⅱ a/b-protein on the yield of P-700-photooxidation in pea chloroplasts. Biochim. Biophys. Acta. 764:324-330. Thompson, W. K., D. L. Jones, and D. G. Nichols. 1975. Effects of dormancy factors on the growth o vegetative buds of young apple trees. Austral. J. Agr. Res. 26:989-996. Udomprasert, N., P. H. Li, D. W. Davis, and A. H. III. Markhart. 1995. Effects of root temperatures on leaf gas exchange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris. Crop sci. 35(2):490-495. Veitch, J., & Sons Ltd. 1904. Novelties offered by James Veitch & Sons, Ltd. Royal Exotic Nursery, Chelsea, SW. Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:579-620. Walton, D. C. 1980. Biochemistry and physiology of abscisic acid. Ann. Rev. Plant Physiol. 31:453-489. Wareing, P. F. S. 1971. Hormones and Dormancy. Ann. Rev. Plant Physiol. 22:261-288. Weinberger, J. H. 1954. Effect of high temperature during the breaking of the rest of Sullivan Elberta peach buds. Proc. Amer. Soc. Hort. Sci. 63:157-162. Westwood, M. N. and H. O. Bjornstad. 1968. Chilling requirement of dormant seeds of 14 pear species as related to their climatic adaptation. J. Am. Soc. Hort. Sci. 92:141-149. Wilson, E. H. 1913. A Naturalist in Western China with Vasculum. Camera and Gun. 2. Wu, M. T. and S. J. Wallner. 1984. Heat stress responses in cultured plant cells. Heat tolerance induced by heat shock versus elevated growing temperature. Plant physiol. 75(3):778-780. Yan, J. Y. 1981. Histoire d''Actinidia chinensis Planch. et conditions actuelles de sa production a l''etranger. Journal d''Agriculture Traditionelle et de Botanique Appliquee. 28:281-290. Yordanov, I., S. Dilova, and R. Petkova. 1986. Mechanisms of the themperature damage and acclimation of the photosynthetic apparatus. Photo-biochem. Photobiophys. 12:147-155. Zhang, Y., C. W. Ross, G. L. Orr. 1994. Enhanced activity of a Ca-calmodulin- dependent isozyme of NAD kinase caused by gibberellic acid in photodormant lettu
摘要: 
台灣野生獼猴桃資源豐富,種間、種內的性狀變異均大,以台灣羊桃(A. setosa)為例,果實形狀可從近圓、卵圓、橢圓至扁橢圓,果肉顏色可由黃綠、翠綠至綠肉紅心,充分軟熟之果實之口感也可從淡而無味的10.2°Brix至香甜可口的16°Brix,最可口的野生台灣羊桃是進一步複選的優良材料。
硬齒獼猴桃(A. callosa)在台灣的地理分佈上,呈現廣溫性、廣域性分佈的現象,從海拔1800m的南橫栗園沿線、海拔1200m的大漢山麓沿線至海拔400m的壽卡沿線均可見其野生族群的分佈,且3海拔之族群生育狀況均佳,每年均能正常開花結果,生育能力不受海拔影響,但3族群之物候週期卻因海拔略有不同。栗園地區之種子休眠性最深,需經3週5℃±2℃低溫層積才有少量種子發芽,隨層積週數增加,種子發芽率也增加;壽卡地區種子休眠性最淺,即使不經層積,也有20%之發芽率,這對適應較熱的氣候而言是必需具備的最基本條件;這種休眠深度與海拔成正相關的現象也反映在冬季休眠的枝條上,呈現海拔越高,休眠越深的狀況,而打破休眠所需的層積時間也越久,像這樣同種內休眠深度與海拔成正相關之差異,或許可為獼猴桃耐熱育種開創新契機。
將栗園與壽卡兩處收集的野生硬齒獼猴桃種子播種培育後,栽植於台中縣霧峰鄉中興大學園藝試驗場內進行耐熱選拔,發現壽卡地區之硬齒獼猴桃後裔平均葉片面積較大、平均枝條較長、不產生大量短而密的側枝、也不產生長而粗的徒長枝,枝條外觀性狀較為平均;而栗園地區之硬齒獼猴桃後裔則相反,有些植株易產生長而粗的徒長枝,有些植株則易產生短而密的側枝,且葉片均較狹小。
在植株同化能力方面,固定老葉光合能力隨時間推移而逐漸下降,恰成熟新葉光合能力則不因測量日期而改變,光合能力的強弱在不同族群間的差異較不明顯,族群內的實生苗光合能力差異反而較族群間差異顯著。
硬齒獼猴桃之光合能力與葉片溫度相關性低,但與氣孔導度的相關性高,由相關曲線顯示,氣孔導度小於0.2 mol•m-2•s-1即能抑制植株的光合能力,這顯示在夏秋高溫季節,植株氣孔能正常開放者,同化能力就相對較高。栗園地區硬齒獼猴桃之後裔中,不乏氣孔導度大、光合能力強之植株,但外觀性狀卻呈現不耐熱性狀之意義為:高海拔植群並非真的不耐平地夏季高熱,使葉片無法蓄積同化產物,而是植株被夏秋季被高溫所干擾,同化物傾向直接利用而不儲存,導致秋梢競相萌發,養分競爭的結果,產生大量短而小的側枝與新葉,使植株外觀呈現近似不耐熱的表徵。

The characters of four wild kiwifruit species in Taiwan were investigated in this study. The wild kiwifruits in Taiwan present great diviation in genotype and phenotype. For example, the shape of Actinidia setosa fruit varies from near globose、 ovoid to flate globose;fresh color varies form yellow-green、jade-green to green with red core. The average total soluble solid contains from 10.2 °Brix to 16 °Brix. The most tasty A. setosa plant can be used to further selection.
Wild A. callosa plants in Taiwan were found in mountains with different elevation from 400m、1200m and 1800m. We found out that these 3 populations could nomally grow and bear fruit in their own region, but their dormancy characteristic are quite different.
In the experiment, A. callosa seeds collected from low attitude even needn’t stratification, and the germination rate can reach 20%. This machinism is very important of them to suit much hotter condition in their own region. In the other way, seeds collected from high land must be suffered 3 weeks or more cold stratification to break winter dormancy. Similar result happened in excised cane test which dormant shoots were collected wildly in November.
The seeds taken from wild were breed in NCHU and later planted at Wu-Fung low land for heat resistant test. We obtained that plants originally germed from low attitude has larger leaves, longer shoot average length at the end of the research than plants from high land. In the opposite, plant from high land had smaller leaves and lots of shorter shoots.
The photosynthesis ability was low correlated with different population and leave surface temperature, but much correlated with group inter-differences and leave stomatal aperture. It means that we could find plants with high photosynthesis rate in every population, and even these plants are suffering the heat stress, photosynthesis rate will still be high if the stomata can normally open.
In the high altitude race, some plants show high photosynthesis rate but have shorter shoots and small leaves. This may be the result of the assimilation balance interfered by high temperature that causes the presence of numorous autumn shoots, which compete for the energy source with each other.
URI: http://hdl.handle.net/11455/28596
其他識別: U0005-0702200716584900
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.