Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2861
標題: 應用田口法對氧化鋯平面磨削表面粗糙度參數最佳化研究
Study of Taguchi Method on Surface Roughness Optimization of Zirconia Plane Grinding Parameters
作者: 林登文
Lin, Deng-Wen
關鍵字: 氧化鋯;Zirconia;平面磨削;田口實驗規劃法;表面粗糙度;Plane grinding;Taguchi’s method;Surface roughness
出版社: 機械工程學系所
引用: [1] 廖國忠, “氧化鋯陶瓷延性加工之特性研究” , 國立中興大學機械工程系碩士論文, 2008。 [2] Zhaowei Zhong, “Surface Finish of Precision Machined Advanced Materials”, Journal of Materials Processing Technology, Vol.122, pp.173-178, 2002. [3] B. K. A. Ngoi and P. S. Sreejith, “Ductile Regime Finish Machining – A Review”, The International Journal of Advanced Manufacturing Technology, Vol.16, pp.547–550, 2000. [4] Bi Zhang, X.L. Zheng, H. Tokura, M. Yoshikawa, “Grinding induced damage in ceramics”, Journal of Materials Processing Technology, Vol.132 , pp.353-364, 2003. [5] Y. F. Tan, P. Martin, C. Lescalier, O. Bomont, R. Bigot, J. Arzur, “Study on the ground surface quality of Cr2O3 coatings”, Journal of Materials Processing Technology,Vol.129,PP.441-445, 2002. [6] J. Kopac, P. Krajnik “ High-performance grinding-A review ", Journal of Materials Processing Technology, Vol. 175, pp.278–284, 2006. [7] Han Huang, “Machining characteristics and surface integrity of yttria stabilized tetragonal zirconia in high speed deep grinding”, Materials Science and Engineering A345, pp.155-163, 2003. [8] Jianyi Chen, Jianyun Shen, Hui Huang, Xipeng Xu, “Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels", Journal of Materials Processing Technology , Vol. 210 , pp.899–906, 2010. [9] Ling Yin, Han Huang, “Ceramic Response to High Speed Grinding”, MACHINING SCIENCE AND TECHNOLOGY, Vol. 8, No. 1, pp. 21–37, 2004. [10] 蔡志鴻, “具奈米振動輪磨加工機的分析” , 國立中山大學機械工程研究所碩士論文, 2001。 [11] W.K. Chen, H. Huang, “Ultra precision grinding of spherical convex surfaces on combination brittle materials using resin and metal bond cup wheels”, Journal of Materials Processing Technology, Vol. 140, pp.217-223, 2003. [12] H. Huang, W.K. Chen, L. Yin, Z. Xiong, Y.C. Liu, P.L. Teo, “Micro/meso ultra precision grinding of fibre optic connectors”, Precision Engineering, Vol. 28, pp.95–105, 2004. [13] Ling Yin , Han Huang, “Brittle materials in nano-abrasive fabrication of optical mirror-surfaces”, Precision Engineering, Vol. 32, pp. 336–341, 2008. [14] Yan Yanyan , Zhao Bo , Liu Junli ,“Ultraprecision surface finishing of nano-ZrO2 ceramics using two-dimensional ultrasonic assisted grinding”, Int J Adv Manuf Technol, Vol. 43, pp.462–467, 2009. [15] 林繼永, “振動磨削技術應用於陶瓷材料加工之研究”, 國立雲林科技大學機械工程系碩士論文, 2005。 [16] 王先達, 馬明霞, “Ultraprecise grinding technology with diamond micro powder grinding wheel”, Products & Technolog, 第2期, 2003。 [17] Zhou Zhiping, Liu Jingshong, “Grinding-Comprehensive of High-temperature Structural Ceramics and Grinding Technology”, Tool Engineering, 2005. [18] B. K. A. Ngoi, P. S. Sreejith, “Ductile Regime Finish Machining – A Review”, Int J Adv Manuf Technol Vol. 16, pp.547–550, 2000. [19] 詹捷, 陳小安, 王永剛, 梁福軍, “工程陶瓷材料精密加工技術”, 機械工藝師(月刊), 第6期, 1998。 [20] I. D. Marinescu, “Handbook of Advanced Ceramics Machining”, CRC Press, 2007. [21] W. Lortz, “A Model of the Cutting Mechanism in Grinding”, Department of Mechanical Engineering, Vol.53, pp.115–128, 1979. [22] 鄭建新, 徐家文, 呂正兵, “陶瓷材料延性域磨削機理”, JOURNAL OF THE CHINESE CERAMIC SOCIETY, 第34卷, 第1期, 2006。 [23] T.C. Lee , C.W. Chan, “Mechanism of the ultrasonic machining of ceramic composites”, Journal of Materials Processing Technology, Vol.71, pp.195, 1997. [24] 鄧朝暉, 張 璧, 孫宗禹, 周志, “陶瓷磨削材料去除機理的研究進展” , 中國機械工程, 第13卷, 第18期, 1608-1611頁, 2002。 [25] T. G. Bifano, T. A. Dow, R. O. Scattergood, “Ductile-Regime Grinding: A New Technology for Machining Brittle Materials”, Journal of Engineering for Industry, Vol .113, 1991 [26] 欒敏, 機械製造技術基礎, 北京大學出版社, 2009。 [27] 馬其駿, “包含剪切與犁切機制之磨削力模式”, 國立成功大學機械工程研究所碩士論文, 2002。 [28] M.C.Shaw, “Principles of Abrasive Processing”, Clarendon Press , 1996. [29] 張隆武, “磨削加工條件對玻璃基材邊緣品質之影響”, 國立成功大學機械工程研究所碩士論文, 2006。 [30] 李輝煌, 田口方法-品質設計的原理與實務, 高立圖書有限公司, 2004。 [31] 徐瑞富, “以田口方法改善金線偏移之銲線製程問題”, 中原大學機械工程學系碩士學位論文, 2005。 [32] 梁辛瑋, “應用雷射刻劃微晶矽薄膜太陽能電池絕緣製程參數最佳化之研究”, 國立台灣科技大學自動化及控制研究所碩士論文, 2009。 [33] 洪全一, “超硬脆薄板材料最佳切削方式之研究”, 國立中興大學機械工程研究所碩士論文, 2003。 [34] 林易萱, “矽晶圓薄化之研磨特性研究”, 國立中山大學機械與機電工程學系碩士論文, 2006。 [35] 周彥成, “應用鑽石塗層刀具之鋯鈦酸鉛(PZT)薄膜微銑削加工特性研究”, 國立中興大學機械工程研究所碩士論文, 2012。
摘要: 
隨著陶瓷材料的應用越來越廣泛,對它的要求也開始越來越嚴苛,為了使元件保持良好的性能,必須有高水準的尺寸精度及無損傷的平滑表面。目前陶瓷材料的表面品質通常是仰賴於拋光加工,但拋光加工幾乎無材料去除能力,因此只適合在加工程序中的最後一道程序使用。磨削在這方面有著折衷的優點,透過磨削參數的調整,能有效地使表面粗糙度變佳,並能直接進行工件平面度的修整。因此本研究主要是透過平面磨削參數的調整,進行氧化鋯陶瓷表面品質的優化,目的是在平面磨床上,實現陶瓷材料的精密磨削。
本研究透過田口實驗規劃法進行磨削參數的規劃調整,以最佳表面粗糙度為目標,得到各磨削參數對目標的影響趨勢及最佳化參數,再經由影響表面粗糙度的相關參數進行進階優化實驗。所研究的表面品質除了表面粗糙度的評估分析外,也進行了平面度磨削實驗及表面品質的觀測,另外對於磨削效率及不同砂輪的磨削經驗也進行了探討。
在研究成果方面,已獲得氧化鋯陶瓷平面磨削對表面粗糙度的最佳化參數及影響趨勢,並經過變異數分析驗證其結果無誤。透過進階優化實驗,陶瓷結合劑鑽石砂輪平面磨削最佳表面粗糙度可達Ra0.0218μm、工件平面度最佳為0.9μm。樹脂結合劑鑽石砂輪平面磨削最佳表面粗糙度更可達Ra0.0072μm的程度,工件表面如鏡面般光滑。

With the application of ceramic materials more widely, its processing quality requirements become increasingly harsh. In order to maintain good performance of the element, there must be a high level of dimensional accuracy and a smooth surface without damage. The surface quality of ceramic materials is usually dependent on the polishing, polishing almost no ability to remove material, only suitable for the final machining program. In this regard, the grinding has compromise advantages. By adjusting the grinding parameters, it is effective to make the surface roughness becomes better, and can directly trimmed workpiece flatness.
This research expects to achieve the precision grinding of ceramic materials on a plane grinder, through the adjustment of the plane grinding parameters to optimize the surface quality of zirconia. First, the optimal surface roughness as the goal of the research, planning grinding parameters using Taguchi’s method, in order to get the trend of grinding parameters and optimize the parameters. And then, implementation of advanced optimization experiments by the relevant parameters. The surface quality of the study, not only the surface roughness analysis, also carried out flatness grinding experiments and microscopic observation of the surface quality. On the other hand, also discusses the grinding efficiency and grinding wheel experience.
The results of this research successfully obtain optimization parameters of zirconia plane grinding in surface roughness, and verification by ANOVA. Through advanced optimization experiments, vitrified diamond wheel plane grinding roughness can reach Ra0.0218μm, and the workpiece flatness of 0.9μm. Resin diamond wheel plane grinding even reach Ra0.0072μm, the workpiece surface such as a mirror-like smooth.
URI: http://hdl.handle.net/11455/2861
其他識別: U0005-2201201313091900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.