Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2863
標題: 應用鑽石塗層刀具之鋯鈦酸鉛(PZT)薄膜微銑削加工特性研究
Study of Micro-Milling for PZT Thin Film Using Diamond Coated Tool
作者: 周彥成
Chou, Yen-Cheng
關鍵字: 微銑削;Micromilling;鋯鈦酸鉛;PZT;鑽石塗層刀具;PZT;CVD diamond coated tool
出版社: 機械工程學系所
引用: [1] C. C. Lee, C. C. Wu, G. Z. Cao, and I. Y. Shen, 2005, A scale-up prototype of PZT thin-film actuators for scanning endoscopes, 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, Vol. 2005, pp. 241-244 [2] R. Komanduri, D. A. Lucca, and Y. Tani, 1997, Technological Advances in Fine Abrasive Processes, Annals of the CIRP, Vol. 46, Issue 2, pp. 545–596. [3] P. W. Bridgman, 1953, Effects of Very High Pressures on Glass, Journal of Applied Physics, Vol. 24, pp.405-413. [4] B. Lawn, R. Wilshaw, 1975, Indentation fracture: principles and applications, Journal of Materials Science, Vol. 10, Issue 6, pp. 1049-1081. [5] F. Z. Fang, L. J. Chen, Ultra-precision cutting for ZKN7 glass, 2000, CIRP Annals - Manufacturing Technology, Vol. 49, pp. 17–20. [6] S. Shimada, N. Ikawa, T. Inamura, N. Takezawa, H. Ohmori, T. Sata, 1995, Brittle– ductile transition phenomena in microindentation and micromachining, Annals of CIRP, Vol. 44, Issue 1, pp. 523–526. [7] T. G. Bifano, T. A. Dow, R. O. Scattergood, 1991, Ductile-regime grinding: a new technology for machining brittle materials, Journal of Engineering for Industry, Vol. 113, pp. 184–189. [8] D. B. Marshall, B. R. Lawn, 1986, Indentation of brittle materials, Micro-indentation Techniques in Materials Science and Engineering, American Society for Testing and Materials, Philadelphia, pp. 26–46. [9] G. K. Thimmaiah, P. C. Harish, J. A. Pattena, C. J. Brando, D. T. Marusichb, 2001, Numerical simulation of ductile machining of silicon nitride with a cutting tool of defined geometry, Machining Science and Technology, Vol.5, pp. 341–352. [10] J. A. Patten and W. Gao, 2001,Extreme Negative Rake Angle Technique for Single Point Diamond Nano-Cutting of Silicon, Journal of the International Societies for Precision Engineering and Nanotechnology, Vol. 25, pp. 165–167. [11] T. P. Leung, W. B. Lee, X. M. Lu, 1998, Diamond turning of silicon substrates in ductile-regime, Journal of Materials Processing Technology, Vol. 73, pp. 42–48. [12] M. B. Cai, X. P. Li, M. Rahman, 2007, Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamic simulation, International Journal of Machine Tools & Manufacture, Vol. 47, pp. 75–80. [13] K. Cheng, X. Luo, R. Ward, R. Holt, 2003, Modeling and simulation of the tool wear in nanometric cuttingWear, Wear, Vol. 255, pp. 1427–1432. [14] M. Sharif Uddin, K. H. W. Seah, M. Rahman, X. P. Li, K. Liu, 2007, Performance of single crystal diamond tools in ductile mode cutting of silicon, Journal of Materials Processing Technology, Vol. 185, pp. 24–30. [15] G. Newby, S. Venkatachalam, S. Y. Liang, 2007, Empirical analysis of cutting force constants in micro-end-milling operations, Journal of Materials Processing Technology, Vol. 192–193, pp. 41–47. [16] M. Arif, M. Rahman, Y.S. Wong, 2011, Analytical model to determine the critical feed per edge for ductile–brittle transition in milling process of brittle materials, International Journal of Machine Tools & Manufacture, Vol. 51, pp. 170–181. [17] T. Matsumura, T. Hiramatsu, T. Shirakashi, T. Muramatsu, 2005, A study on cutting force in the milling process of glass, Journal of manufacturing processes, Vol. 17, Issue 2, pp. 102–108. [18] M. Arif, M. Rahman, Y. S. Wong, 2011, Ultraprecision ductile mode machining of glass by micromilling process, Journal of Manufacturing Processes, Vol. 13, pp. 50–59. [19] T. Matsumura, T. Ono, 2008, Cutting process of glass with inclined ball end mill. Journal of Material Processing Technology, Vol. 200, pp. 356–363. [20] T. Ono, T. Matsumura, 2008, Influence of tool inclination on brittle fracture in glass cutting with ball end mills, Journal of Material Processing Technology, Vol. 202, pp. 61–69. [21] K. Foy, Z. Wei, T. Matsumura, Y. Huang, 2009, Effect of tilt angle on cutting regime transition in glass micromilling, International Journal of Machine Tools & Manufacture, Vol. 49 pp. 315–324. [22] 宋孟桓,2008,鋯鈦酸鉛薄膜之性質量測及其在發電裝置應用之研究,國立中興大學機械工程研究所碩士論文。 [23] 饒珮瑩,2003,利用微機電技術設計及製作壓電式微型加速計,國立成功大學航空太空工程研究所碩士論文。 [24] 李正中,1999,薄膜光學與鍍膜技術,藝軒圖書出版社。 [25] M. C. Shaw, 2005, Metal Cutting Principles, Oxford University Press. [26] C. J. Kim, J. R. Mayor, J. Ni, 2004, A Static Model of Chip Formation in Microscale Milling, Journal of Manufacturing science and engineering, Vol. 126, pp. 710–718. [27] 張煌權,2001,包含側邊及底面犁切力之端銑及面銑力模式,國立成功大學機械研究所碩士論文。 [28] J. Chae, S. S. Park, T. Freiheit, 2006, Investigation of micro-cutting operations, International Journal of Machine Tools & Manufacture, Vol. 46, pp. 313–332. [29] M. E. Martellotti, 1941, An Analysis of the Milling Process, Transaction of ASME, Vol. 63, pp. 677–700. [30] X. Li, 2002, A Brief Review: Acoustic Emission Method for Tool Wear Monitoring During Turning, International Journal of Machine Tool & Manufacture, Vol. 42, pp. 157–165.
摘要: 
隨著科技日新月異,硬脆材料的應用越加廣泛,若以機械加工方式切削脆性材料,多以磨輪切削或超音波加工為主,且機械加工受脆性材料的易碎裂傾向影響,需以適宜切削條件方能達到延性切削模式,本研究探討以微銑削加工於鋯鈦酸鉛薄膜材料,其不同切削參數對延脆性切削模式的影響。鋯鈦酸鉛是硬脆材料中一種具良好的壓電性能的材料,應用範圍日益廣泛,但以半導體製程加工,加工精度與效率較矽晶圓低,屬難加工材料,故選用機械方式對此材料加工,以期能提供一較有效率之薄膜圖案製造能力。
本研究以槽銑方式進行實驗,探討不同切削參數對於延脆性切削的影響,影響延脆性切削模式的參數有:軸向切深、進給速度、刀具幾何形狀、刀具磨耗以及切削速度。延脆轉換區以軸向切深的臨界值與每刃每轉進給速度來量化;而實驗中判斷延性或脆性切削狀態,則以觀察加工後的溝槽邊側產生之缺陷以及切削過程中收集之切屑型態做為依據;被削材料選用PZT薄膜與矽晶圓,比較其延性切削參數臨界值;切削刀具採用鑲鑽磨棒、端銑刀與鑽石塗層端銑刀,觀察磨削與銑削對延性切削臨界值之影響,也進一步探討有無鑽石塗層端銑刀於硬脆材料的切削性能;另以動力計感測切削過程之切削力,觀察訊號趨勢對於判斷延脆性切削模式之可行性。
實驗結果顯示鑽石塗層刀具抗磨耗性能高於未鍍膜刀具,比較延性切削臨界值,矽晶圓之延性切削臨界值高於PZT薄膜材料;考慮不同刀具之作用,以鑽石塗層刀具加工所獲得之延性切削臨界值高於鑲鑽磨棒;觀察刀具磨耗之影響,刀具磨耗使刀具加工模式更趨向延性切削;增加切削速度,材料加工之延性切削臨界值越低,但是刀具經過磨耗後,同轉速下刀具直徑越大者,其延性切削臨界值增加越大;另外分析槽銑過程中溝槽兩側之加工狀態,逆銑側之延性切削臨界值幾乎皆大於順銑側。

The demand for manufacturing complex device made of brittle material increases dramatically due to its specific characteristics compared metal and polymer materials. However, the low machinability of brittle material still challenges its applications on the mass production line. In tradition, semiconductor process is used for machining the thin film made of brittle material. However, low efficiency and quality on etching PZT thin film increase the cost and flexibility for pattern generation. Therefore, how to make a device made of PZT material more efficiency and flexible draws an attention lately. This research focus on the study of machinability for PZT thin film using diamond coated end mill to develop a more efficiency and lower cost solution to manufacturing the PZT thin film device.
The effect of the cutting parameters such as depth of cut, feed rate, tool geometry, cutting velocity on the brittle/ductile chip generation is discussed, as well as the effect from the tool wear level. The critical depth of cut and critical feed rate for generating the ductile chip was determined based on the observation of chip type and chipping on the top side surface of machined slot. Except for the PZT thin film, the silicon wafer was also investigated as a reference with the same cutting condition. To investigate the cutting velocity effect on machining performance, three size of cutting tool was used in this study to generate different cutting velocity. In monitoring the transition from brittle chip to ductile chip, a Kistler dynamometer was used to measure the cutting force change during cutting.
The experimental results show that tool life can be improved by coating diamond thin film on the tool in cutting brittle material. By compared to silicon wafer, PZT thin film provides the lower value of critical depth of cut for ductile chip generation. At the same time, higher value of critical depth of cut was observed by implementing CVD diamond coated tool than diamond grinder with the same diameter as CVD diamond coated tool. In the analysis of tool wear effect on the ductile mode machining, tool wear makes the chip generation closer to ductile mode machining than sharp tool with the same depth of cut. . With the tool wear increases, the higher cutting speed will make the ductile mode machining available than the lower speed cutting. To investigate the two sides of generated slot, the side with up milling provides the higher value of critical depth of cut than down milling side.
URI: http://hdl.handle.net/11455/2863
其他識別: U0005-3008201218302600
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.