Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28634
標題: 整枝、季節與密度對彩色甜椒‘羅拉’果實產量與品質的影響
Effect of Training, Growing Season and Plant Density on Yields and Fruit Quality of Sweet Pepper ''Lustro'' (Capsicum annuum L.)
作者: 歐德濾
Ou, Te-Lu
關鍵字: sweet pepper;彩色甜椒;training;density;整枝;密度
出版社: 園藝學系所
引用: 柒、 參考文獻 方怡丹。2008。甜椒生產體系改進之研究。國立中興大學園藝學研究所博士論文。台灣台中。 李阿嬌。1995。籃耕甜椒整枝栽培及密度對產量之影響。桃園區農情月刊 73:1-4。 林國青。2001。番茄栽培密度與留花序數對果實產量、品質及採收期的影響。國立中興大學園藝學研究所碩士論文。台灣台中。 邱阿昌。1987。甜椒˙辣椒。p.22-34。專業栽培蔬菜30種。豐年社。 張武男。1980。甜椒˙辣椒。p.1018-1021。台灣農家要覽(上)。豐年社。 郭孚耀。2000。甜椒栽培技術。臺中區農業改良場 特刊第45號。 郭孚耀。2009。彩色甜椒的真相。臺中區農業改良場。 戴振洋。1999。整枝方式對茄子生育及產量之影響。國立中興大學園藝 學研究所碩士論文。台灣台中。 Abdal, M. and M. Suleiman. 2005. Blossom end rot occurrence in calcareous soil of Kuwait. Acta Hort. 695: 63-65. Adams, P. and L. Ho. 1992. The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J. Hort. Sci. 67: 827-839. Ahmed, F.E., A.E. Hall, and D.A. DeMason. 1992. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Amer. J. Bot. 79: 784-791. Ali, A.M. and W.C. Kelly. 1992. The effects of interfruit competition on the size of sweet pepper (Capsicum annuum L.) fruits. Sci. Hort. 52: 69-76. Aloni, B., E. Pressman, and L. Karni. 1999. The effect of fruit load, defoliation and night temperature on the morphology of pepper flowers and on fruit shape. Ann. Bot. 83: 529-534. Aloni, B., L.Karni, G. Deventurero, E. Turhan, and H. Aktas. 2008. Changes in ascorbic acid concentration, ascorbate oxidase activity, and apoplastic pH in relation to fruit development in pepper (Capsicum annuum L.) and the occurrence of blossom-end rot. J. Hort. Sci. & Biot. 83(1): 100-105. Aloni, B., L.Karni, Z.Zaidman, and A.A.Schaffer. 1996. Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Ann. Bot. 78: 163-168. Aloni,B., L.Karni, Z.Zaidman, and A.A.Schaffer. 1997. The relationship between sucrose supply, sucrose-cleaving enzymes and flower abortion in pepper. Ann. Bot. 79: 601-605 Aloni,B., L. Larni, Z. Zaidman, Y. R. M. Huberman, and R.Goren. 1994. The susceptibility of pepper (Capsicum annuum L.) to heat induced flower abscission: Possible involvement of ethylene. J. Hort. Sci. 69(5): 923-928. Aloni, B., M.M. Peet, M.F. Pharr, and L. Karni. 2001. The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum L.) pollen in relation to its germination. Phys. Plant. 112: 505-512. Aloni,B., T.Pashkar, and L.Larni. 1991. Partitioning of [14C]sucrose and acid invertase activity in reproductive organs of pepper plants in relation to their abscission under heat stress. Ann. Bot. 67: 371-377. Araki, T., M. Kitano, and H. Eguchi. 2000. Dynamics of fruit growth and Photoassimilate in tomato plants (Lycopersicon esculentum Mill.) under controlled environment. Acta Hort. 534: 85-92. Baër, J. and J. Smeet. 1978. Effect of relative humidity on fruit set and seed set in pepper (Capsicum annuum L.). Neth. J. Agri. Sci. 26: 59-63. Bangerth, F. 1979. Calcium-related physiological disorders of plants. Ann. Rev. Phyto. 17: 97-122. Bangerth, F. 1989. Dominance among fruits/sinks and the search for a correlative signal. Phys.Plan. 76: 608-614. Bertin, N., H. Gautier, and C. Roche. 2001. Number of cells in tomato fruit depending on fruit position and source-sink balance during plant development. Plant Growth Regulation 36: 105-112. Beyer, E.M. and P.W. Morgan. 1971. Abscission: the role of ethylene modification of auxin transport. Plant Physiology. 48: 208-212. Bhullar, S. S. and C. F. Jenner. 1986. Effects of temperature on the conversion of sucrose to starch in the developing wheat endosperm. Aus. J. Plan. Phys. 13: 605-615. Cebula, S. 1995. Optimization of plant and shoot spacing in greenhouse production of sweet pepper. Acta Hort. 412: 321-329. Cochran, H. 1936. Some factors influencing growth and fruit-setting in the pepper (Capsicum frutenscens L.). NY. (Cornell). Agricultural Experiment Station Memoir. 190: 1-39. Cochran, H. 1938. A morphological study of flower and seed development in pepper. J. Agri. Rese. 56: 395-419. Cockshull, K. E. and L. C. Ho. 1995. Regulation of tomato fruit size by plant density and truss thinning. J. Hort. Sci. 70: 395-407. Cockshull, K. E., C. J. Graves, and C. R. J. Cave. 1992. The influence of shading on yield of glasshouse tomatoes. J. Hort. Sci. 67: 11-24. Dinar, M. and J. Rudich. 1985a. Effect of heat stress on assimilate metabolism in tomato flower buds. Ann. Bot. 56: 249-257. Dinar, M. and J. Rudich. 1985b. Effect of heat stress on assimilate partitioning in tomato. Ann. Bot. 56: 239-248. Eguchi, T., T. Araki, S. Yoshida, and M. Kitano. 2003. Xylem sap backflow from tomato fruit under water deficit condition. Acta Hort. 618: 347-351. Erickson, A. N. and A. H. Markhart. 2001. Flower production, fruit set, and physiology of bell pepper during elevate temperature and vapor pressure deficit. J. Amer. Soc. Hort. Sci. 126(6):697-702. Erickson, A. N. and A. H. Markhart. 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant, Cell and Enviroment 25: 123-130. Gent, M.P.N. 1986. Carbohydrate level and growth of tomato plants: the effect of irradiance and temperature. Plant Physiology 81: 1075-1079. Gillaspy, G., H. B. David, and W. Gruissem. 1993. Fruits: a development perspective. The Plant Cell 5: 1439-1451. Guichard, S., C. Gary, C. Leonardi, and N. Bertin. 2005. Analysis of growth and water relations of tomato fruit in relation to air vapor pressure deficit and plant fruit load. J. Plant Gro. Regu. 24: 201-213. Hall, A. J. 1977. Assimilate source-sink relationships Capsicum annuum L. I. The dynamics of growth in fruiting and deflorated plants. Astr. J. Plant Phys. 4: 623-636. Haller, M.H. 1930. The relation of distance and direction of the fruit from the leaves to the size and composition of apples. Proc. Amer. Soc. Hort. Sci. 27: 63-68. Havaux, M. 1993. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell and Enviroment 16: 461-467. Hawker, J. S. 1982. Effect of temperature on lipids, starch and enzymes of starch metabolism in grape, tomato and broad bean leaves. Phytochemistry 21: 33-36. Heden, P. and G. V. Hoad. 1985. Hormonal regulation of fruit growth and development. In: Jeffcoat B, Hawkins AF, Stead AD, eds. Regulation of sources and sinks of crop plants. British Plant Growth Regulator Group, Monograph 12: 211-221. Heuvelink, E. 1995. Effect of plant density on biomass allocation to the fruits in tomato (Lycopersicon esculentum Mill.). Sci. Hort. 64: 193-201. Heuvelink, E. and O. Korner. 2001. Parthenocarpic fruit growth reduces yield fluctuation and blossom-end rot in sweet pepper. Ann. Bot. 88: 69-74. Heuvelink, E. and R. P. M. Buiskool. 1995. Influence of sink-source interaction on dry matter production in tomato. Ann. Bot. 75: 381-389. Ho, L. C. and P. J. White. 2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann. Bot. 95: 571-581. Jovicich, E., D.J. Cantliffe, and G.J. Hochmuth. 1999. Plant density and shoot pruning on fruit yield and quality of a summer greenhouse sweet pepper crop in north central Florida. p.184-190. In: K.D. Batal (ed.). 28th Natl. Agr. Plastics Congr. Proc. Amer. Soc. Plasticult., Tallahassee, Fla. 19-22 May 1999. ASP, State College, Pa. Jovicich, E., D.J. Cantliffe, and P. J. Stoffela. 2004. Fruit yield and quality of greenhouse-grown bell pepper as influenced by density, container, and trellis system. Hort. Tech.14(4): 507-513. Jovicich, E., D. J. Cantliffe, P. J. Stoffella, and D. Z. Haman. 2007. Bell pepper fruit yield and quality as influenced by solar radiation-based irrigation and container media in a passively ventilated greenhouse. Hor. Sci. 42(3) : 642-652. Karni, L., B. Aloni, A. Bar-Tal, S. Moreshet, M. Keinan, and C. Yao. 2000. The effect of root restriction on the incidence of blossom-end rot in bell pepper (Capsicum annuum L.). J. Hort. Sci. Bio. 75(3): 364-369. Kinet, J.M., R.M. Sachs, and G. Bernier. 1985. Photosynthesis, assimilate supply and utilization. In: Kinet, J.M., R.M. Sachs, and G. Bernier, eds. The physiology of flowering, Vol. III. Boca Raton, Florida: CRC Press Inc. Kitroongruang, N., S. Jodo, J. Hisai, and M. Kato. 1992. Photosynthesis characteristics of melons grown under high temperatures. J. Jap. Soc. Hort. Sci. 61: 107-114. Kogbe, J.O.S. 1983. Effects of spacing on the yield of local and exotic species of eggplant. Acta Hort. 123: 291-297. Loomis, R.S. and D.J. Connor. 1992. Corp ecology: Productivity and management in agricultural system. Cambridge Univ. Press, Cambridge, U.K. Lorenzo, P. and N. Castilla. 1995. Bell pepper yield response to plant density and radiation in unheated plastic greenhouse. Act. Hort. 412: 330-334. Lyrene, P. M. 1989. Pollen source influences fruiting of ‘Sharpblue’ blueberry. J.Ame. Soci. Hort. Sci. 114: 995-999. Macleod, L. C. and C.M. Duffus. 1988. Reduced starch content and sucrose synthase activity in developing endosperm of barley plants grown at elevated temperatures Aus. J. Pla. Phys. 15: 367-375. Magan, J. J., M. Gallardo, R. B. Thompson, and P. Lorenzo. 2008. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouse in Mediterranean climatic conditions. Agri. Water Mana. 95: 1041-1055. Marcelis, L. F. M. 1991. Effects of sink demand on photosynthesis in cucumber. J. Exp. Bot. 42: 1387-1392. Marcelis, L. F. M. 1993. Effect of assimilate supply on the growth of individual cucumber fruit. Phys. Plan. 87: 313-320. Marcelis, L. F. M. 1996. Sink strength as a determinant of dry matter partitioning in the whole plant. J. Exp. Bot. 47: 1281-1291. Marcelis, L. F. M and A. N. M. De Koning. 1995. Biomass partitioning in plants. In: Bakker, J.C., G.P.A. Bot, H. Challa, and N.J. Van de Braak, eds. Greenhouse climate control. An intergrated approach. Wageningen: Wageningen Pers, 84-92. Marcelis, L. F. M. and L. C. Ho. 1999. Blossom-end rot in relation to growth rate and calcium content in fruits of sweet pepper (Capsicum annuum L.). J.Expt. Bot. 50: 357-363. Marcelis, L. F. M. and L. R. Baan Hofman-Eijer. 1993. Effect of temperature on the growth of individual cucumber fruits. Phys. Plan. 87: 321-328. Marcelis, L. F. M. and L. R. Baan Hofman-Eijer. 1995. Growth analysis of sweet pepper fruits (Capsicum annuum L.). Act. Hort. 412: 470-478. Marcelis, L. F. M. and L. R. Baan. Hofman-Eijer. 1997. Effects of seed number on competition and dominance among fruits in Capsicum annuum L. Ann. Bot. 79: 687-693. Marcelis, L. F. M., E. Heuvelink, L. R. Baan Hofman-Eijer, J. Den Bakker, and L. B. Xue. 2004. Flower and fruit abortion in sweet pepper in relation to source and sink strength. J. Exp. Bot.55(406): 2261-2268. McLaughlin, S. B. and R. Wimmer. 1999. Calcium physiology and terrestrial ecosystem processes. New Phytologist 142: 373-417. Mercado, J. A., B. Vinegla, and M.A. Quesada. 1997. Effects of hand-pollination, paclobutrazol treatments, root temperature and genotype on pollen viability and seed fruit content of winter-grown pepper. J. Hort. Sci. 72: 893-900. Mercado, J. A., M. Trigo, M. Reid, V. Valouesta, and M. Quesada. 1997. Effects of low temperature on pepper pollen morphology and fertility: evidence of cold induced exine alterations. J. Hort. Sci. 72: 317-326. Moccia, S. and F. Katcherian. 1997. Effects of density on the yield components of cherry tomato. Hort. Arge. 16: 40-41, 5-10. Monteiro, A. A. 1994. Outlook on growing techniques of greenhouse solanacea in mild-winter climates. Act. Hort. 366: 21-32. Nederhoff, E M., A. N. M. De Koning, and A. A. Rijsdijk. 1992. Leaf deformation and fruit production of glasshouse grown tomato (Lycopersicon esculentum Mill.) as affected by CO2, plant density and pruning. J. Hort. Sci. 67: 411-420. Ofir, M., Y. Gross, F. Bangeth, and J. Kigel. 1993. High temperature effects on pod and seed production as related to hormone levels and abscission of reproductive structure in common beans ( Phaseolus vulgaris L.). Sci. Hort. 55: 201-211. Ortega, R.G. and M. Gutierrez. 2004. Plant density influences marketable yield of directly seeded ‘Piquillo’ pimiento pepper. Hort. Sci. 39(7): 1584-1587. Paiva, E. A. S., H. E. P. Martinez, V. W. D. Casali, and L. Padilha. 1998. Occurrence of blossom-end rot in tomato as a function of calcium dose in the nutrient solution and air relative humidity. J. Plan. Nutr. 21: 1663-2670. Papadopoulos, A. P. and D. P. Ormrod. 1988. Plant spacing effects on light interception by greenhouse tomato. Can. J. Plan. Sci. 68: 1197-1208. Papadopoulos, A. P. and D. P. Ormrod. 1990. Plant spacing effects on yield of the greenhouse tomato. Can. J. Plan. Sci. 70: 565-573. Papadopoulos, A. P. and S. Pararajasingham. 1997. The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): A review. Sci. Hort. 69: 1-29. Peet, M. M. 2009. Physiological disorder in tomato fruit development. Acta Hort. 821: 151-160. Peet, M. M., D.H. Willits, and R.G. Gardner. 1997. Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. J. Exp. Bot. 48: 101-106. Peet, M. M., S. Sato, and R.G. Gardner. 1998. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Enviroment 21: 225-231. Picken, A. J. F. 1984. A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill). J. Hort. Sci. 59: 1-13. Pimpini, F. and G. Gianquinto. 1994. Influence of pinching, crop density and different growing methods on fresh market tomatoes grown under protected cultivation for early production. Acta Hort. 357: 343-352. Plieth, C. 2001. Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 218: 1-23. Polowick, P. L. and V. K. Sawhney. 1985. Temperature effects on male fertility and flower and fruit development in Capsicum annuum L. Sci. Hort. 25: 117-127. Portree, J. 1996. Greenhouse vegetable production guide for commercial growers. J. Portree(ed.). Ext. Systems Branch, Ministry of Agr., Fisheries, and Food, British Columbia, Canada. Pressman, E., H. Moshkovitch, K. Rosenfeld, R. Shaked, B. Gamliel, and B. Aloni. 1998. Influence of low night temperatures on sweet pepper flower quality and the effect of repeated pollinations, with viable pollen, on fruit setting. J. Hort. Sci. Biot. 73: 131-136. Pressman, E., R. Shaked, and N. Firon. 2006. Exposing pepper plants to high day temperatures prevents the adverse low night temperature symptoms. Phys. Plan. 126: 618-626. Resh, H. M. 1996. Hydroponic food production. 5th ed. Woodbridge Press Publ. Co., Santa Barbara, Calif. Rylski, I. 1973. Effect of night temperature on shape and size of sweet pepper (Capsicum annuum L.). J. Ame. Soci. Hort. Sci. 98: 149-152. Rylski, I. 1985. Capsicum. In: Halevy, H.A. (Ed.), CRC Handbook of Flowering. CRC Press, Boca Raton. FL. p. 140-146. Rylski, I. 1986. Pepper(Capsicum). In: Monselise, S.P. (Ed.), CRC Handbook of Fruit Set. CRC Press, Boca Raton. FL. p. 341-354. Rylski, I. and M. Spigelman. 1982. Effects of different diurnal temperature combinations on fruit set of sweet pepper. Sci. Hort. 17: 101-106. Rylski, I. and M. Spigelman. 1986. Effect of shading on plant development, yield and fruit quality of sweet pepper grown under conditions of high temperature and radiation. Sci. Hort. 29: 31-35. Sato, S., M. M. Peet, and J. F. Thomas. 2000. Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell and Enviroment 23: 719-726. Saure, M. C. 2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.)-a calcium or a stress-related disorder? Sci. Hort. 90: 193-208. Shaked, R., K. Rosenfeld, and E. Pressman. 2004. The effect of low night temperature on carbohydrates metabolism in developing pollen grains of pepper in relation to their number and functioning. Sci. Hort. 102: 29-36. Shipp, J.L., G.H. Whitfield, and A.P. Papadopoulos. 1994. Effectiveness of the bumble bee, Bombus impatiens Cr. (Hymenoptera: Apidae), as a pollinator of greenhouse sweet pepper. Sci. Hort. 57: 29-39. Shishido, Y., H. Challa, and J. Krupa. 1987. Effects of temperature and light on the carbon budget of young cucumber plants studied by steady state feeding with 14CO2. J. Exp. Bot. 38: 1044-1054. Sjut,V. and F. Bangerth. 1982. Induced parthenocarpy----a way of changing the levels of endogenous hormons in tomato fruits (Lycopersicon esculentum Mill.) 1. Extractable hormons. Plant Growth Regulation 1: 243-251. Sjut, V and F. Bangerth. 1984. Induced parthenocarpy----a way of manipulating levels of endogenous hormons in tomato fruits (Lycopersicon esculentum Mill.) 2. Diffusible hormons. Plant Growth Regulation 2: 49-56. Stephenson, A. G. 1981. Flower and fruit abortion: Proximate causes and ultimate functions. Annual Review of Ecology and Systematics 12: 253-279. Stephenson, A. G., B. Devlin, and J. B. Horton 1988. The effects of seed number and prior fruit dominance on the pattern of fruit production in Cucurbita pepo (Zucchini squqsh). Ann. Bot. 62: 653-661. Stoffella, P. J. and H. H. Bryan. 1988. Plant population influences growth and yields of bell pepper. J. Amer. Soc. Hort. Sci. 113: 835-839. Student, G., W. Schneider, and J. Leidel. 1986. Phase of berry growth in Vitis vinifera. Ann. Bot. 58: 789-800. Suzuki, K., M. Shono, and Y. Egawa. 2003. Localization of calcium in the pericarp cells of tomato fruits during the development of blossom-end rot. Protpplasma 222: 149-156. Tadesse, T., M. A. Nichols, E. W. Hewett, and K. J. Fisher. 2001. Relative humidity around the fruit influence the mineral composition and incidence of blossom-end rot in sweet pepper. J. Hort. Sci. Biot.76: 9-16. Tamas, I. A., D. H. Wallace, P. M. Ludford, and J. L.Ozbun. 1979. Effect of older fruits on abortion and abscisic acid concentration of younger fruits in Phaseolus vulgaris L. Plan. Phys. 64: 620-622. Taylor, M. D. and S. J. Locascio. 2004. Blossom-end rot: a calcium deficiency. J. Plan. Nutr. 27: 123-139. Turhan, E., H. Aktas, G. Deventurero, L. Karni, A. Bar-Tal, and B. Aloni. 2006. Blossom-end rot is associated with impairment of suger metabolism and growth of pepper (Capsium annuum L.) fruits. J. Hort. Sci. Bio. 81(5): 921-927. Turhan, E., L. Karni, H. Aktas, G. Deventurero, D. C. Chang, A. Bar-Tal and B. Aloni. 2006. Apoplastic anti-oxidents in pepper (Capsicum annuum L.) fruit and their relationship to blossom-end rot. J. Hort. Sci. Bio. 81(4): 661-667. Turner, A. D. and H. C. Wien 1994. Dry matter assimilation and partitioning in pepper cultivars differing in susceptibility to stress-induced bud and flower abscission. Ann. Bot. 73: 617-622 Valantin-Morison, M., B. E. Vaissiere, C. Gary, and P. Robin 2006. Source –sink balance affects reproductive development and fruit quality in cataloup (Cucumis melo L.). J. Hort. Sci. Biot. 81: 105-117. Vara Prasad, P.V., P.Q. Craufurd, V.G. Kakani, T.R. Wheeler, and K.J. Boote. 2001. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Aust. J. Plan. Phys. 28: 233-240. Varga, A. and J.Bruinsma.1976. Roles of seeds and auxins in tomato fruit growth. Zeitschrift für Pflanzenphysiologie 80: 95-104. Verslues, P. E. and J. K. Zhu. 2007. New developments in abscisic acid perception and metabolism. Curr. Opin. Plan. Bio. 10: 447-452. Warholic, N.T. 1975. The effect of temperature on locule number and fruit shape of sweet pepper (Capsicum annuum L.). M.Sc. Thesis, Cornell University, Ithaca, NY. Warrag, M.O.A. and A.E. Hall. 1984. Reproductive responses of Cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature. Field Crops Research. 8: 17-33. Wells, O.S. 1967. The effect of night temperature on fruit set of pepper (Capsicum annuum L.). Ph. D. Thesis, Rutger University, New Brunswick, NJ. White, P.J. and M. R. Broadley. 2003. Calcium in plants. Ann. Bot. 92: 487-511. Wien, H. C. and A. D.Turner. 1989. Hormonal basis for low light intensity-induced flower bud abscission of pepper. J.Amer. Soc. Hort. Sci. 114(6): 981-985 Wubs, A. M., Y. Ma, E. Heuvelink, and L. F. M. Marcelis. 2009. Genetic differences in fruit-set patterns are determined by differences in fruit sink strength and a source : sink threshold for fruit set. Ann. Bot. 104: 957-964.
摘要: 
本試驗以彩色甜椒‘羅拉’為材料,研究整枝方式、栽培季節及栽培密度對袋耕彩色甜椒果實產量與品質的影響。試驗一分別於2008年10月6日至2009年4月10日(秋冬季)及2009年2月23日至2009年7月10日(春夏季)進行,比較單幹整枝、雙幹整枝及不整枝三種處理在不同栽培季節對果實產量與品質的影響;試驗二於2009年2月23日至2009年7月10日(春夏季)進行,分單幹整枝6株/袋、雙幹整枝6株/袋(2.5株/m2)、單幹整枝4株/袋、雙幹整枝4株/袋(1.7株/m2)等四種處理,比較整枝方式在不同栽培密度下對果實產量與品質的影響 。
試驗一結果顯示,單株之總果數不論於秋冬季或春夏季皆以不整枝最大,與整枝間有顯著差異,分別為10.9 粒/株及5.0 粒/株,秋冬季雙幹整枝大於單幹整枝,春夏季雙幹整枝與單幹整枝無顯著差異,平均雙幹整枝大於單幹整枝。單株總果重不論於秋冬季或春夏季皆以不整枝最大,與整枝間有顯著差異,分別為1288.9 g/株及581.1 g/株,雙幹整枝與單幹整枝無顯著差異。單株可販售果數及果重不論於秋冬季或春夏季皆以不整枝最大,與整枝間有顯著差異,秋冬季分別為5.7 粒/株及987.6 g/株,春夏季分別為3.2 粒/株及424.4 g/株,雙幹整枝與單幹整枝無顯著差異。單株中大果數及果重於秋冬季以整枝最大,與不整枝間有顯著差異,單幹整枝與雙幹整枝無顯著差異,分別為單幹整枝之2.5 粒/株及609.9 g/株,雙幹整枝之2.3 粒/株及546.2 g/株,三種處理結果於春夏季無顯著差異。單株小果數及果重不論於秋冬季或春夏季皆以不整枝最大,與整枝間有顯著差異,秋冬季分別為4.0 粒/株及608.9 g/株,春夏季分別為3.1 粒/株及408.1 g/株,秋冬季雙幹整枝大於單幹整枝,春夏季單幹整枝與雙幹整枝無顯著差異。平均單果重不論於秋冬季或春夏季皆以單幹整枝最大,與雙幹整枝及不整枝間有顯著差異,分別為秋冬季之177.0 g/粒及春夏季之146.7 g/粒,秋冬季雙幹整枝大於不整枝,春夏季雙幹整枝與不整枝無顯著差異,平均雙幹整枝大於不整枝。果實品質指標如果實硬度、果肉厚度、可溶性固形物、維生素C含量等,於不同整枝處理間無顯著差異,果實硬度、可溶性固形物、維生素C含量為秋冬季顯著大於春夏季。
試驗二結果顯示,栽培密度不影響單株果數及果重、可販售果數及果重、中大果數及果重、平均單果重及果實品質,但密度增加會增加單位面積總果數及果重、單位面積小果數及果重,且會減少單位面積罹病果數及果重。
綜合試驗結果,單株之總產量(含果數及果重)及小果產量以不整枝最大,中大果產量以單幹整枝或雙幹整枝最大,平均單果重以單幹整枝最大;不同栽培季節下無論總產量、中大果產量、平均單果重以及果實品質,秋冬季皆大於春夏季;栽培密度增加會提高單位面積總產量、單位面積可販售果產量及單位面積小果產量,且會減少單位面積罹病果產量,但不影響單株產量及可販售果產量、單位面積中大果產量、平均單果重及果實品質。
由以上結果得知,台灣地區溫室袋耕彩色甜椒的生產,因受到季節性溫度高低的影響,平地適合於秋季至春季,夏季宜選擇中高海拔地區栽培,周年性之生產仍以中高海拔地區較有利,但冬季應保溫以縮短生產週期;整枝雖然會降低總產量,但卻會增加中大果的數量,秋冬季價格高,上價與下價差異大,適合採整枝栽培,單幹整枝之平均單果重顯著大於雙幹整枝,建議採單幹整枝,春夏季價格低,上價與下價差異較小,為節省勞力可採不整枝栽培;栽培密度每袋6株之單位面積總產量大於每袋4株之產量,密度高並有利於降低罹病果比例,可否更密植值得後續研究;整枝處理雖耗費較多勞力成本,但整枝後可節省農藥使用量及噴藥費用,採收、分級包裝費用會降低,總產量雖然降低,但中大果比例較高,相對售價較高,整體的利潤高低亦值得評估比較。

The objective of this study was to compare the effect of training method, growing season and plant density on yields and fruit quality of sweet pepper‘Lustro'(Capsicum annuum L.).
Sweet pepper plants were grown in peat-moss based soil bags in the plastic greenhouse for two seasons, the Autumn-Winter season and the Spring-Summer season, separately in Pu-Li. Yields and fruit quality of the plants were evaluated in both two seasons in the first trial under different training methods, single-stem pruning, twin-stem pruning, and non- pruning, respectively. And were evaluated in the second trial conducted also in the Autumn-Winter season in four treatments, single-stem pruning with 1.7 plants/m2 and 2.5 plants/m2 , twin-stem pruning with 1.7 plants/m2 , and 2.5 plants/m2 , respectively.
The total fruit number was greatest in non-pruned plants in both seasons, and was greater in twin-stem than in single-stem pruned plants in the Autumn-Winter season, but there was no difference between twin-stem and single-stem pruned plants in the Spring-Summer season.
The total fruit weight was greatest in non-pruned plants in both seasons, but there was no difference between twin-stem and single-stem pruned plants in both seasons.
Both of the marketable fruit number and fruit weight were greatest in non-pruned plants in both seasons, but there was no difference between twin-stem and single-stem pruned plants in both seasons.
Both of the medium-to-large fruit number and fruit weight were greatest in pruned plants in the Autumn-Winter season, but there was no difference between twin-stem and single-stem pruned plants. And there was no difference among non, twin-stem and single-stem pruned plants in the Spring-Summer season.
Both of the small fruit number and weight were greatest in non-pruned plants in both seasons. And were greater in twin-stem than in single-stem pruned plants in the Autumn-Winter season. There was no difference between twin-stem and single-stem pruned plants in the Spring-Summer season.
The average fruit weight was greatest in single-stem in both seasons. And was greater in twin-stem than in non pruned plants in the Autumn-Winter season. But there was no difference between twin-stem and non pruned plants in the Spring-Summer season.
The training methods did not affect the fruit quality characteristics like hardness, thickness, total soluable solids content, Vitamin C content, seed number and seed weight of the fruit.
The total fruit yields, marketable fruit yields, and small fruit yields per square meter were grater in plant density 2.5 plants/m2 than in 1.7 plants/m2 . But there was no difference in medium-to-large fruit yield and average fruit weight between them.
The plant density did not affect the fruit quality characteristics like hardness, thickness, total soluable solids content, Vitamin C content, seed number and seed weight of the fruit.
In summary, the total fruit yields and small fruit yields of sweet pepper were greatest in non-pruned plants. The medium-to-large fruit yields were greater in pruned plants than in non-pruned plants, but there was no difference in pruned plants between single-stem and twin-stem pruned plants. The average fruit weight was greatest in single-stem pruned plants. The total fruit yields, marketable fruit yields, and small fruit yields per square meter will increase when plant density was from 1.7 plants/m2 to 2.5 plants/m2 . But there was no difference in medium-to-large fruit yields and average fruit weight between them. The training methods and plant density did not affect the fruit quality. The yields and fruit quality was greater in Autumn-Winter season than in Spring-Summer season.
URI: http://hdl.handle.net/11455/28634
其他識別: U0005-1808201116223500
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.