Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2872
標題: 整合加熱器與電路之二氧化鋯微氨氣感測器
Zirconium dioxide ammonia microsensors with heater and readout circuit
作者: 林冠明
Lin, Guan-Ming
關鍵字: CMOS-MEMS;CMOS-MEMS;溶膠凝膠;水熱合成;奈米二氧化鋯;微氨氣感測器;zirconium dioxide;sol-gel;micro ammonia sensor
出版社: 機械工程學系所
引用: [1] 王瑩,急性重度氨中毒15例臨床分析,中華勞動衛生職業病雜誌,1990。 [2] 陳一誠、劉旭禎,一氧化碳氣體感測技術,工業材料雜誌,第227期 (1995), 69–80。 [3] S. Szakacs, G. J. Altena, T. Fransen, J. G. Van Ommen, and J. R. H. Ross, “The selective reduction of NOx with NH3 over zirconia-supported vanadia catalysts,” Sensors and Actuators, B: Chemical, Vol. 16, Issue 2,pp. 237-245, 1993. [4] S, Shashwati , K. P. Muthe, J. Niraj, S. C. Gadkari, S. K. Gupta, M. Roy, S. K. Deshpande, and J. V. Yakhmi, “Room temperature operating ammonia sensor based on tellurium- zirconia thin films,” Sensors and Actuators, B: Chemical, vol. 98, no. 2-3, pp. 154-159, 2004. [5] D. Galbarra, J. A. Francisco, R. M. Ignacio, and O. C. Richard, “Ammonia optical fiber sensor based on self-assembled zirconia thin films,” Smart Materials and structures, vol. 14, no. 4, pp. 739-744, 2005. [6] G. G. M. Fournier, I. W. Cumming, and K. Hellgardt, “High performance direct ammonia solid oxide fuel cell,” Journal of Power Sources, vol. 162, no. 1, pp. 198-206, 2006. [7] S. Ken-ichi, H. Tadashi, N. Hiroyuki, K. Shiro, S. Satoshi, and Y. Hitoshi, “Polytungstate clusters on zirconia as a sensing material for a selective ammonia gas sensor,” Sensors and Actuators, B: Chemical, vol.123, no. 2, pp. 757-762, 2007. [8] S. Abhay, and S. Ramphal, “Copper sulphide (CuxS) doped zirconia thin films as an ammonia gas sensor working at room temperature,” Sensors and Actuators, B: Chemical, vol. 133, no. 1, pp. 135-143, 2008. [9] P. Elumalai, V. V. Plashnitsa, Y. Fujio, and N. Miura, “High temperature mixed-potential-type ammonia sensor using stabilized zirconia and oxide-based sensing electrode,” ECS Transactions, vol. 16, no. 11, pp. 247-255, 2008. [10] E. Perumal, P. Vladimir V., F. Yuki, and M. Norio, “Stabilized zirconia-based sensor attached with NiOAu sensing electrode aiming for highly selective detection of ammonia in automobile exhausts,” Electrochemical and Solid-State Letters, vol.11,no. 11, pp. J79-J81, 2008. [11] S. Daniela, W. Kerstin, F. Maximilian, and M. Ralf, “Selective mixed potential ammonia exhaust gas sensor,” Sensors and Actuators, B: Chemical, vol. 140, no. 2, pp. 585-590, 2009. [12] W. Zhong, Q. Zhenping, Q. Xie, and W. Hui, “Selective catalytic oxidation of ammonia to nitrogen over ceria-zirconia mixed oxides,” Applied Catalysis , A: General, vol.411-412, pp. 131-138, 2012. [13] 陳光龍,奈米級氧化鋯結晶粒子之高濃度穩定懸浮液製備,國立中央大學化學工程研究所碩士論文,2000。 [14] S. Colominas, and J. Abella, “Evaluation of potentiometric oxygen sensors based on stabilized zirconia for molten 44.5 % lead-55.5 % bismuth alloy,” Sensors and Actuators, B: Chemical, vol. 145, no. 2, pp. 720-725, 2010. [15] M. Mamak, N. Coombs, and G. A. Ozin, “Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: A new class of solid oxide fuel cell electrode materials,” Advanced Funtional Materials, vol. 11, no. 1, pp. 59-63, 2001. [16] S. M. Sze, Semiconductor Sensors , John Wiley and Sons, (1994) 388-396. [17] 楊閔智,整合型氧化鋅微氨氣感測器,國立中興大學機械研究所碩士論文,2010。 [18] S. Daniela, W. Kerstin, F. Maximilian, and M. Ralf, “Selective mixed potential ammonia exhaust gas sensor,” Sensors and Actuators, B: Chemical, vol. 140, no. 2, pp 585-590, 2009. [19] M. Atsushi, I. Minoru, O. Zempachi, T. Tadayoshi, K. Tomoo, T. Akimasa, and K. Kenji, “Preparation of yttria-stabilized zirconia microtube by electrochemical vapor deposition,” Journal of the American Ceramic Society, vol. 78, no. 11, pp. 3157-3159, 1995. [20] S. Federico, S. Milena, A. L. Chandru, P. Sergio, M. Tomasz, B. Stefano, D. Lioudmila, and F. Monica, “Yttria-stabilized zirconia thin film electrolyte produced by RF sputtering for solid oxide fuel cell applications,” Materials Letters, vol. 64, no. 22, pp. 2450-2453, 2010. [21] S. Heiroth, T. Lippert, A. Wokaun, M.Dobeli, J. L. M. Rupp, B.Scherrer, and L. J. Gauckler, “Yttria-stabilized zirconia thin films by pulsed laser deposition: Microstructural and compositional control,” Journal of the European Ceramic Society, vol. 30, no. 2, pp. 489-495, 2010. [22] M. V. F. Schlupp, M. Prestat, J. Martynczuk, J. L. M. Rupp, A. B. Hutter, and L. J. Gauckler, “Thin film growth of yttria stabilized zirconia by aerosol assisted chemical vapor deposition,” Journal of Power Sources, vol. 202, pp. 47-55, 2012. [23] L. Bo, and L. Ying-Sung, “Sol-gel synthesis and characterization of mesoporous yttria-stabilized zirconia membranes with graded pore structure,” Journal of Materials Science, vol. 46, no. 21, pp. 7056-7066, 2011. [24] C. Qibing, Z. Jian-Er, W. Yongqing, and M. Guangyao, “Preparation and characterization of unique zirconia crystals within pores via a sol-gel-hydrothermal method,” Advanced Powder Technology, vol. 20, no. 4, pp. 371-374, 2009. [25] 徐萍、王敏煒,表面活性劑模板法製備介孔氧化鋯的研究進展,南昌大學化學工程系,江西、大陸,2010。 [26] L. Xiao-Lin, I. Pappas, M. Fitzgerald, Z. Ying-Jie, M. Eibling, and P. Long, “Solvothermal synthesis and characterization of ZrO2 nanostructures using zirconium precursor,”Materials Letters, vol. 64, issue. 2, pp. 1591- 1594, 2010. [27] D. Wen-Sheng, L. Feng-Qiang, L. Chun-Ling, and L. Meng-Yuan, “Synthesis of ZrO2 nanowires by ionic-liquid route,” Journal of Colloid and Interface Science, vol. 333, issue. 2, pp. 734-740, 2009. [28] C. Hu-min, W. Li-jun, M. Ji-ming, Z., Zhi-ying, and Q. Li-min, “Effects of pH and alkaline earth ions on the formation of nanosized zirconia phases under hydrothermal conditions,” Journal of the European Ceramic Society, vol. 19, no. 8, pp. 1675-1681, 1999.
摘要: 
本研究以半導體微機電CMOS-MEMS 技術製作整合型微氨氣感測器,利用溶膠凝膠法、水熱合成法製備出奈米二氧化鋯作為吸附氨氣的感測薄膜,其製備方法容易並有效降低成本。而微氨氣氨測器感測結構是利用0.18 μm 1P6M金屬推疊而成,經由後製程處理將二氧化矽犧牲層去除,使指叉電極裸露出來,再將感測薄膜-二氧化鋯滴覆在電極間隙中,最後燒結使薄膜成型。為了使二氧化鋯在特定溫度下有良好的靈敏度,其感測結構下方安置一組小型加熱器提供熱源,使二氧化鋯保持工作溫度下量測氨氣。當二氧化鋯吸附或解離氨氣時,造成感測薄膜電阻改變,並整合運算放大電路將電阻變化量轉換成輸出電壓變化量讀出。
感測區總面積為1.2 x 0.6 mm2,而實驗量測部分當在特定溫度285 ℃下,通入微量氨氣0-50 ppm的氨氣濃度時,其電阻值從684.4 kΩ下降至544.5 kΩ,整體變化量為139.8 kΩ。在連續性通入氨氣濃度0-50 ppm的實驗下,其平均反應時間及回復時間為63秒、75秒。藉由整合電路下,通入氨氣濃度0-50 ppm時,其輸出電壓從1.44 V下降至1.24 V,整體電壓變化量為206.7 mV,感測器靈敏度為4.1 mV/ppm。

The study presents a micro ammonia sensor integrated with a readout circuit manufactured by TSMC 0.18 μm 1P6M (one polysilicon and six metals) CMOS (complementary metal oxide semiconductor) process. The integrated ammonia sensor is composed by interdigitated electrodes and a sensing film. The sensor has a heater under the interdigitated electrodes to provide the working temperature. The post-process was used to remove the sacrificial layer, and to expose the interdigitated electrodes. The sensing film of the ammonia sensor was zirconium dioxide that prepared by sol-gel and hydrothermal method. The zirconium dioxide was coated on the interdigitated electrodes, and then it was sintered. When the sensing film absorbs or desorbs the ammonia gas, the sensor generates a change in resistance. The readout circuit is used to convert the sensor resistance into the output voltage. The experimental results showed that the resistance of the sensor decreased from 684.4 kΩ to 544.5 kΩ as the ammonia gas concentration changed from 0 to 50 ppm at 285 ℃. The sensitivity of the ammonia sensor was about 4.1 mV/ppm, and the response/recovery times were 63/75 s at 50 ppm ammonia concentration, respectively.
URI: http://hdl.handle.net/11455/2872
其他識別: U0005-1308201217332700
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.