Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28723
標題: 酒精及氮氣對番木瓜種子發芽及植株淹水耐受力之影響
Effects of Ethanol and Nitrogen Gas on Seeds Germination and Waterlogging Tolerance of Papaya (Carica papaya L.) Plants
作者: 邱健誠
Ciou, Jian-Cheng
關鍵字: papaya;番木瓜;ethanol;nitrogen gas;hypoxic tolerance;酒精;氮氣;缺氧耐受力
出版社: 園藝學系所
引用: 王祝仙。1990。玉米幼苗根部對淹水的反應。國立中興大學農藝研究所碩士論文。臺灣:臺中。80pp.。 王德男。2005。番木瓜。臺灣農家要覽農作篇(二)。農委會。pp. 129-136。 王德男、李文立。2006。木瓜栽培管理要點。園藝之友114:12-17。 王德男、劉碧鵑、李文立。2006。臺灣木瓜產業之變遷。行政院農業委員會農業試驗所特刊第125號。pp. 1-20。 江忠穎。2007。不同葉色甘藷的葉綠素螢光及葉片反射光譜特性。國立中興大學生命科學系碩士論文。臺灣:臺中。109pp.。 仲崇毅、李芳胤。2008。應用熏氣技術評估植物對二氧化硫耐受性暨淨化效益之研究。環保署/國科會空污防制科研合作計畫成果完整報告NSC 97-EPA-M-127-001。 李文立。2009。木瓜栽培管理手冊。行政院農業委員會農業試驗所特刊第140號。pp. 2-39。 吳登琳。2005。耐淹水番茄(Lycopericon esculentum Mill)與茄子(Solanum melongena Linn)根砧篩選。國立嘉義大學農業研究所碩士論文。臺灣:嘉義。81 pp.。 邱國棟。1999。環境因素對蓮霧葉片光合作用之影響。國立臺灣大學園藝學研究所碩士論文。臺灣:臺北。91pp.。 林文豪。2004。低溫/相對強光逆境下Chlorella光合作用與超氧歧化酶活性之變化。國立中興大學生命科學系碩士論文。臺灣:臺中。74pp.。 侯福分、曾富生。1992。蜀黍種子耐水性篩選方法之研究。中華農藝2:213-219。 施宏霖。2003。稻米在缺氧狀態下發芽所產生酒精分子的研究。國立成功大學化學研究所碩士論文。臺灣:臺南。46pp.。 唐士禮、張新雄。1990。大豆種子發芽期間耐溼性之研究(2): ADH活性、酒精累積量與耐溼性。中華農會學報150號。pp.22-33。 翁仁憲。2006。不同生態習性植物光合作用、葉綠素螢光及葉片反射光譜特性(II) – 水分關係。行政院國家科學委員會專題研究計畫成果報告NSC 94-2313-B005-060。 陳福旗 譯。1986。番木瓜之演進。中國園藝 32:146-150。 張文東。2000。浸水逆境下玉米幼苗植株過氧化作用與抗氧化系統的反應。國立中興大學農藝學系博士論文。臺灣:臺中。216pp.。 黃國林。2004。葉綠素螢光檢測番木瓜罹患木瓜輪點病毒病後之耐受性。國立臺灣大學園藝學研究所碩士論文。臺灣:臺北。114pp.。 黃薇綺。2005。高溫、低溫、乾旱與淹水逆境對甘藷葉綠素螢光影響之研究。中國文化大學生物科技研究所碩士論文。臺灣:臺北。111pp.。 楊翎翎。2004。淹水對苜蓿種子發芽、生長及根構造之影響。國立嘉義大學農學研究所碩士論文。臺灣:嘉義。91pp.。 鄭美淑。1987。人工浸水對玉米幼苗出土及生長的影響。國立中興大學糧食作物研究所碩士論文。臺灣:臺中。75pp.。 蔡喬木。2003。Phaseolus vulgaris 與 Phaseolus acutifolius 光合作用對環境適應之探討。國立清華大學生命科學系碩士論文。臺灣:新竹。61pp.。 劉芳芸。2009。番木瓜果皮汙斑微細構造及酒精對種子萌芽與幼苗耐淹水之研究。國立中興大學園藝學系碩士論文。臺灣:臺中。165pp.。 蘇百祥。1995。絲瓜幼苗在淹水逆境下根之生理反應。國立中興大學植物學系研究所碩士論文。臺灣:臺中。83 pp.。 Ahmed, S., E. Nawata, and T. Sakuratani. 2006. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiata (L.) Wilczak cv. KPS1) during waterlogging. Environ. Exp. Bot. 57: 278-284. Al-Ani, A., F. Bruzau, P. Raymond, V. Saint-Ges, J. M. Leblanc, and A Pradet. 1985. Germination, respiration, and adenylate energy charge of seeds at various oxygen partial pressures. Plant Physiol. 79: 885-890. Andrews, D. L., B. G. Cobb, J. R. Johnson, and M. C. Drew. 1993. Hypoxic and anoxic induction of alcohol dehydrogenase in roots and shoots of seedlings of Zea mays (Adh transcripts and enzyme activity). Plant Physiol. 101: 407-414. Armstrong, W.. 1979. Aeration in higher plants. pp. 225-232. In: H. W. Woolhouse (ed.) Advances in Botanical Research. Vol. 7. Academic Press, New York. Avadhani, P. N., H. Greenway, R. Lefroy, and L. Prior. 1978. Alcoholic fermentation and malate metabolism in rice germinating at low oxygen concentrations. Aust. J. Plant Physiol. 5:15-25. Ball, M. C., J. A. Butterworth, J. S. Roden, R. Christian, and J. G. Egerton. 1994. Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiol. 22: 311-319. Berry, J. and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543. Bertani, A., I. Brambilla, and F. Menegus. 1980. Effect of anaerobiosis on rice seedlings: growth, metabolic rate, and fate of fermentation products. J. Exp. Bot. 31: 325-331. Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170: 489-504. Bolhàr-Nordenkampf, H. R. and G. Öquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. pp.193-206. In: D. O. Hall, J. M. O. Scurlock, H. R. Bolhàr-Nordenkampf, R. C. Leegood, S. P. Long (eds), Photosynthesis and Production in a Changing Environment: a Field and Laboratorymanual. Chapman and Hall, New York. Burdick, D. M. and I. A. Mendelssohn. 1990. Relationship between anatomical and metabolic responses to soil waterlogging in the coastal grass Spartina patens. J. Exp. Bot. 41: 223-228. Carpenter, J. R. and C. A. Mitchell. 1980. Root respiration characteristics of flood-tolerant and intolerant tree species. J. Am. Soc. Hortic. Sci. 105: 684-687. Chang, L. A., L. K. Hammett, and D. M. Pharr. 1983. Carbon dioxide effects on ethanol production, pyruvate decarboxylase, and alcohol dehydrogenase activities in anaerobic sweet potato roots. Plant Physiol. 71:59-62. Chen, H., R. G. Qualls, and G. C. Miller. 2002. Adaptive responses of Lepidium latifolium to soil flooding: biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48:119-128. Ching, T. M., S. Hedtke, M. C. Boulger, and W. E. Kronstad. 1977. Correlation of field emergence rate and seed vigor criteria in barley cultivar. Crop Sci. 17: 312-314. Crawford, R. M. M.. 1967. Alcohol dehydrogenase activity in relation to flooding tolerance in roots. J. Exp. Bot. 18: 458-464. Crawford, R. M. M.. 1978. Metabolic adaptation to anoxia. pp. 119-136. In: D. Hook and R. M. M. Crawford (eds), Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, USA. Crawford, R. M. M.. 1992. Oxygen availability as an ecological limit to plant distribution. Adv. Ecol. Res. 23:93-185. Crawford, R. M. M. and P. D. Tyler. 1969. Organic acid metabolism in relation to flooding tolerance in roots. J. Ecol. 57: 235-244. Davies, D. D.. 1980. Anaerobic metabolism and the production of organic acids. pp. 581-611. In: D. D. Davies, (ed), The Biochemistry of Plant: a Comprehensive Treatise. Academic Press Inc., New York. Davies, D. D., S. Grego, and P. Kenworthy. 1974. The control of the production of lactate and ethanol by higher plants. Planta 118: 297-310. Drew, M. C., M. B. Jackson, and S. C. Giffard. 1979. Ethylene promoted adventitious rooting and development of cortical air spaces (aerenchyma) in roots may be adaptive response to flooding in Zea mays L.. Planta 147: 83-88. Drew, M. C., C. J. He, and P. W. Morgan. 2000. Programmed cell death and aerenchyma formation in roots. Trends Plant Sci. 5: 123-127. Fausey, N. R. and M. B. Jr. McDonald. 1985. Emergence of inbred and hybrid corn following flooding. Agron. J. 77: 51-56. Fukao, T. and J. Bailey-Serres. 2008. Ethylene–A key regulator of submergence response in rice. Plant Sci. 175: 43-51. Givelberg, A., M. Hozowitz, and A. Poljakoff-Mayber. 1984. Solute leakage from Solanum nigrum L. seeds exposed to high temperature during imbibition. J. Exp. Bot. 35: 1754-1763. Haase, K., O. D. Simone, W. J. Junk, and W. Schmidt. 2003. Internal oxygen transport in cutting from flood-adapted várzea tree species. Tree Physiol. 23: 1069-1076. Hetherington, S. E. and Smillie, R. M. 1983. Using chlorophyll fluorescence in vivo to measure the chilling tolerance of different populations maize. Aust. J. Plant Physiol. 10:247-256. Hole, D. J., B. G. Cobb, P. S. Hole, and M. C. Drew. 1992. Enhancement of anaerobic respiration in root tips of Zea mays following low-oxygen (hypoxic) acclimation. Plant Physiol. 99: 213-218. Huang, B. and J. W. Johnson. 1995. Root respiration and carbohydrate status of two wheat genotypes in response to hypoxia. Ann. Bot. 75: 427-432. Igaue, I. and M. Yagi. 1982. Alcohol dehydrogenase from cultured rice cells. Plant Cell Physiol. 23:213-225. Jackson, M. B. and M. C. Drew. 1984. Effects of flooding on growth and metabolism of herbareous plants. pp. 47-128. In: T. T. Kozlowski, (ed), Flooding and Plant Growth. Academic Press Inc., New York. Jayasekera, G. A. U., D. M. Reid, and E. C. Yeung. 1990. Fates of ethanol produced during flooding of sunflower roots. Can. J. Bot. 68: 2408-2414. Jenkin, L. E. T. and T. ap Rees. 1983. Effects of anoxia and flooding on alcohol dehydrogenase in roots of Glyceria maxima and Pisum sativum. Phytochemistry 22:2389-2393. John, C. D. and H. Greenway. 1976. Alcohol fermentation and activity of some enzymes in rice roots under anaerobiosis. Aust. J. Plant Physiol. 3: 325-336. Johnson, J, B. G. Cobb, and M. C. Drew. 1989. Hypoxic induction of anoxia tolerance in root tips of zea mays. Plant Physiol. 91: 837-841. Kelly, P. M.. 1989. Maize pyruvate decarboxylase mRNA is induced anaerobically. Plant Mol. Biol. 13: 213-222. Kelly, P. M. and M. Freeling. 1984. Anaerobic expression of maize glucose phosphate isomerase I. J. Biol. Chem. 259: 673-677. Kende, H., E. van der Knaap, H. T. Cho. 1998. Deepwater rice: a model plant to study stem elongation. Plant Physiol. 118: 1105-1110. Kennedy, R. A., M. E. Rumpho, and T. C. Fox. 1992. Anaerobic metabolism in plants. Plant Physiol. 100: 1-6. Kern, K. A., E. M. Pergo, F. L. Kagami, L. S. Arraes, M. A. Sert, and E. L. Ishii-Iwamoto. 2009. The phytotoxic effect of exogenous ethanol on Euphorbia heterophylla L.. Plant Physiol. Bioch. 47:1095-1101. Khosravi, G. R. and I. C. Anderson. 1990. Pre-emergence flooding and nitrogen atmosphere effects on germinating corn inbreds. Agron. J. 82: 495-499. Kieber, J. 2006. Ethylene: The gaseous hormone. pp.571-591. In: L. Taiz and E. Zeiger (eds), Plant Physiology. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts, USA. Kolb, R. M. and C. A. Joly. 2009. Flooding tolerance of Tabebuia cassinoides: Metabolic, morphological and growth responses. Flora 204: 528-535. Lambers, H. 1976. Respiration and NADH-oxidation of the roots of flood-tolerant and flood-intolerant senecio species as affected by anaerobiosis. Physiol. Plant. 37: 117-122. Lazslo, A. and P. St. Lawrence. 1983. Parallel induction and synthesis of PDC and ADH in anoxic maize roots. Mol. Gen. Genet. 192:110-117. Li, S., S. R. Pezeshkia, and F. D. S. Jr. 2006. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings. J. Plant Physiol. 163: 619-628. Liao, C. T. and C. H. Lin. 1995. Effect of flood stress on morphology and anaerobic metabolism of Momordica charantia. Environ. Exp. Bot. 35: 105-113. Lichtenthaler, H. K.. 1996. Vegetation stress: an introduction to the stress concept in plants. J. Plant Physiol. 148:4-14. Lorbiecke, R. and M. Sauter. 1999. Adventitioius root growth and cell-cycle induction in deepwater rice. Plant Physiol. 119: 21-29. Lott, J. N. A., V. Cavdek, and J. Carson. 1991. Leakage of K, Mg, Cl, Ca, and Mn from imbibing seeds, grains and isolated seed parts. Seed Sci. Res. 1: 229-233. Marler, T. E., A. P. George, R. J. Nissen, and P. C. Anderson. 1994. Miscellaneous tropical fruits. pp.199-224. In: B. Schaffer and P. C. Anderson (eds), Handbook of Environmental Physiology of Fruit Crops. Volume II Sub-Tropical and Tropical Crops. CRC Press, Inc., Boca Raton, FL. USA. Martin, B. A., S. F. Cerwick, and L. D. Reding. 1991. Physiological basis for inhibition of maize seed germination by flooding. Crop Sci. 31: 1052-1057. McDonald Jr., M. B., C. W. Vertucci, and E. E. Roos. 1988. Soybean seed imbibition: water absorption by seed parts. Crop Sci. 28: 993-997. McManmon, M. and R. M. M. Crawford. 1971. A metabolic theory of flooding tolerance: the significance of enzyme distribution and behavior. New Phytol. 70: 299-306. McNamara, S. T. and C. A. Mitchell. 1989. Differential flood stress resistance of two tomato genotypes. J. Amer. Soc. Hort. Sci. 114: 976-980. Mergemann, H. and M. Sauter. 2000. Ethylene induces epidermal cell death at the site of adventitious root emergence in rice. Plant Physiol. 124: 609-614. Metraux, J. P. and H. Kende. 1983. The role of ethylene in the growth response of submerged deep water rice. Plant Physiol. 72: 441-446. Meyers, S. P., C. J. Nelson, and R. D. Horrocks. 1984. Temperature effects on imbibition, germination and respiration of grain sorghum seeds. Field Crop. Res. 8: 135-142. Monson, R. K., M. A. Stidham, G. J. Williams III, G. E. Edwards, and E. G. Uribe. 1982. Temperature dependence of photosynthesis in Agropyron smithii Rydb.. Plant Physiol. 69: 921-928. Moore, P. D.. 1982. Survival mechanisms in wetland plants. Nature 299: 581-582. Muench, D. G., O. W. Archibold, and A. G. Good. 1993. Hypoxic metabolism in wild rice (Zizania palustris): enzyme induction and metabolite production. Physiol. Plantarum 89: 165-171. Mustroph, A. and G. Albrecht. 2007. Fermentation metabolism in roots of wheat seedlings after hypoxic pre-treatment in different anoxic incubation systems. J. Plant Physiol. 164: 394-407. Pardales Jr., J. R., Y. Kono, and A. Yamauchi. 1991. Response of the different root system components of sorghum to incidence of waterlogging. Environ. Exp. Bot. 31:107-115. Perata, P., J. Pozueta,-Romera, T. Akazawa, and J. Yamaguchi. 1992. Effect of anoxia on starch breakdown in rice and wheat seeds. Planta 188: 611-618. Perata, P., N. Geshi, J. Yamaguchi, and T. Akazawa. 1993. Effect of anoxia on the induction of alpha-amylase in cereal seeds. Planta 191: 402-408. Poysa, V. W., C. S. Tan, and J. A. Stone. 1987. Flooding stress and the root development of several tomato genotypes. Hortscience 22: 24-26. Pradet, A. and J. L. Bomsel. 1978. Energy metabolism in plants under hypoxia and anoxia. pp.89-118. In: D. Hook and R. M. M. Crawford (eds), Plant Life in Anaerobic Environments. Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan, USA. Raskin, I. and H. Kende. 1984. Regulation of growth in stem sections of deep-water rice. Planta 160: 66-72. Reggiani, R., A. Hochkoeppler, and A. Bertani. 1989. Polyamines in rice seedlings under oxygen-deficit stress. Plant Physiol. 91: 1197-1201. Roberts, J. K., J. Callis, D. Wemmer, V. Walbot, and O. Jardetzky. 1984a. Mechanisms of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. P. Natl. Acad. Sci. USA 81: 3379-3383. Roberts, J. K., J. Callis, O. Jardetzky, V. Walbot, and M. Freeling. 1984b. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. P. Natl. Acad. Sci. USA 81: 6029-6033. Roberts, J. K. M., K. Chang, C. Webster, J. Callis, and V. Walbot. 1989. Dependence of ethanolic fermentation, cytoplasmic pH regulation and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips. Plant Physiol. 93: 453-459. Rumpho, M. E. and R. A. Kennedy. 1981. Anaerobic metabolism in germinating seeds of Echinochloa crus-galli (barnyard grass): Metabolite and enzyme studies. Plant Physiol. 68: 165-168. Rumpho, M. E. and R. A. Kennedy. 1983. Activity of the pentose phosphate and glycolytic pathways during anaerobic germination of Echinochloa crus-galli (barnyard grass) seeds. J. Exp. Bot. 34: 893-902. Russell, D. A. and M. M. Sachs. 1989. Differential expression and sequence analysis of the maize glyceraldehyde-3-phosphate dehydrogenase gene family. Plant cell 1: 793-803. Sachs, M. M., M. Freeling, and R. Okimoto. 1980. The anaerobic proteins of maize. Cell 22: 761-767. Sairam, R. K., K. Dharmar, V. Chinnusamy, and R. C. Meena. 2009. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J. Plant Physiol. 166: 602-616. Sauter, M.. 2000. Rice in deep water: “How to take heed against a sea of troubles”. Naturwissenschaften 87: 289-303. Singh, R. and B. P. Ghildyal. 1980. Soil submergence effects on nutrient update, growth, and yield of five corn cultivars. Agron. J. 72: 737-741. Smith, A. M., C. M. Hylton, L. Koch, and H. W. Woolhouse. 1986. Alcohol dehydrogenase activity in the roots of marsh plants in naturally waterlogged soils. Planta 168: 130-138. Smith, A. M., G. Kalsi and H. W. Woolhouse. 1984. Products of fermentation in the roots of alders (Alnus Mill.). Planta 160: 272-275. Smith, A. M. and T. ap Rees. 1979. Pathways of fermentation in the roots of marsh plants. Planta 146: 327-334. Steffens, B. and M. Sauter. 2005. Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol. 139: 713-721. Thomas, A. L., S. M. C. Guerreiro, and L. Sodek. 2005. Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann. Bot. 96: 1191-1198. Thomas, H. and J. L. Stoddart. 1980. Leaf senescence. Ann. Rev. Plant Physiol. 31: 83-111. Thomson, C. J. and H. Greenway. 1991. Metabolic evidence for stelar anoxia in maize roots exposed to low O2 concentrations. Plant Physiol. 96: 1294-1301. Thomson, C. J., T. D. Colmer, E. L. J. Watkin, and H. Greenway. 1992. Tolerance of wheat (Triticum aestivum cvs Gamenya and Kite) and triticale (Triticosecale cv. Muir) to waterlogging. New Physiol. 120: 335-344. Trought, M. C. T. and M. C. Drew. 1980. The development of waterlogging damage in wheat seedlings (Triticum aestivum L.). I. Shoot and root growth in relation to changes in the concentrations of dissolved gases and solutes in the soil solution. Plant Soil 54: 77-94. Van Der Straeten, D., Z. Zhou, E. Prinsen, H. A. Van Onckelen, and M. C. Van Montagu. 2001. A comparative molecular-physiological study of submergence response in lowland and deepwater rice. Plant physiol. 125: 955-968. Vantoai, T. T., N. R. Fausey, and M. B. Jr. McDonald. 1985. Alcohol dehydrogenase and pyruvate decarboxylase activities in flood-tolerant and susceptible corn seeds during flooding. Agron. J. 77:753-757. Veen, B. W.. 1988. Influence of oxygen deficiency on growth and function of plant roots. Plant Soil 111:259-266. Voesenek, L. A. C. J., W. Armstrong, T. D. Colmer, G. M. Bögemann and M. P. McDonald. 1999. A lack of aerenchyma and high rates of radial oxygen loss from the root base contribute to the waterlogging intolerance of Brassica napus. Aust. J. Plant Physiol. 26: 87-93. Waters, I., S. Morrell, H. Greenway, and T. D. Colmer. 1991. Effects of anoxia on wheat seedlings. II. Influence of O2 supply prior to anoxia on tolerance to anoxia, alcohol fermentation, and sugar levels. J. Exp. Bot. 42: 1437-1447. Woodrow, L. and B. Grodzinski. 1989. An evaluation of the effects of ethylene on carbon assimilation in Lycopersicon esculentum Mill. J. Exp. Bot. 40: 361-368. Xia, J. H. and P. H. Saglio. 1990. H+ efflux and hexose transport under imposed energy status in maize root tips. Plant Physiol. 93: 453-459. Yang, S. H. and D. Choi. 2006. Characterization of genes encoding ABA 8’-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem. Biophys. Res. Commun. 350: 685-690. Yu, P. T., L. H. Stolzy, and J. Letey. 1969. Survival of plants under prolonged flooded conditions. Agron. J. 61: 844-847.
摘要: 
植物於淹水逆境下,需面對因氧氣缺乏所造成的兩種傷害:能量不足及有毒代謝產物之累積。番木瓜乃一極不耐淹水之果樹,本試驗以無氧呼吸產物–酒精對番木瓜種子進行篩選,並以氮氣模擬低氧逆境,對番木瓜種子及葉片作缺氧耐受力之檢測,期能建立較為迅速且方便之篩選模式。
結果顯示,酒精處理會降低種子發芽率,並延長發芽時間,此效果隨著酒精量及處理時間增加而提升,又以1.0 mL / 4 L之酒精處理3天之效果最為明顯,顯示酒精具有妨礙種子正常生理運作之功能。而以此篩選12品種種子,雖其平均發芽天數顯著較長,但發芽率與對照組差異不大,顯示以酒精處理對種子發芽狀況進行篩檢時,可能受其它因素影響,需再進一步評估。以此幼苗進行淹水處理2天,其外觀及葉綠素螢光均無顯著變化。
而將種子於播種後0、5、10、15及20天以氮氣進行缺氧(氧氣濃度<5%)處理,其發芽率明顯下降,平均發芽天數增加,尤以播種後10天為最。參考本批種子之發芽時程,此時期恰為種子發芽初期,故此階段對缺氧較為敏感,可作為一篩選指標。另以氮氣處理葉片36小時後,其膜體穩定指數及葉綠素螢光値(Fv/Fm)會顯著降低,且成熟葉之反應較新葉及老葉敏感。膜體穩定指數與葉綠素螢光値之變化呈顯著正相關,故可以非破壞性的葉綠素螢光檢測來反映細胞的損傷程度。以此條件篩選17品種之番木瓜成株,‘PPI×ML-F2’可維持最高之葉綠素螢光值,‘Exotica’則最低,此結果可供往後淹水試驗參考之用。

When waterlogged, plants suffer two injuries: accumulation of toxic metabolites and lack of energy caused by the shortage of oxygen. Papaya (Carica papaya L.) is severely waterlogging intolerant and was used to study two methods of sorting seeds for waterlogging tolerance. The first method exposed papaya seeds to ethanol, a toxic metabolic that is the product of anaerobic respiration. The second was to establish an accelerated method of sorting by exposing papaya seeds and leaves to hypoxic (lack of oxygen) stress which was simulated by nitrogen gas.
Results showed that the ethanol treatment of ‘TN2' papaya seeds reduced their germination percentage and extended their germination time in direct correlation to the amount of ethanol and duration of the treatment. The most significant results were seen at 1.0 mL/ 4L ethanol for 3 days in which 66% of the seeds did not germinate and few that did required 15 days to germinate, a process that only takes 10 days under normal conditions. This suggested that the physiological function of seed was obstructed by ethanol. Twelve cultivar seeds were then sorted using this treatment (1.0 mL/4L ethanol for 3 days). The mean germination time of the seeds was increased significantly but the changes in germination were non-significant when compared to the control group. This may indicate that germination of the seeds, which were pretreated with ethanol, might also have been affected by other factors, but this requires further study to confirm. After the ethanol-germination tests, the resulting seedlings underwent waterlogging experiments in which the seedlings were immersed in water for 2 days. The appearance of the seedlings and chlorophyll fluorescence of the leaves did not change significantly.
Nitrogen gas created an oxygen deficient (oxygen concentration was below 5%) condition to which ‘TN2' papaya seeds were exposed at 0, 5, 10, 15, and 20 days after being sown. The germination decreased significantly while the mean germination time increased, especially in the seeds that were exposed to nitrogen on the 10th day after being sown. This is the point in the germination process when the seeds are the most sensitive to oxygen deficiency. Therefore, this treatment can be used as an indicator for sorting. In the nitrogen gas treatment of leaves, the membrane stability index and chlorophyll fluorescence of the leaves of adult papaya plants decreased significantly after 36 hours, more so for mature leaves than for new and older leaves. Changes in the membrane stability index and chlorophyll fluorescence showed a positive correlation; therefore, chlorophyll fluorescence test were used to quickly sort 17 cultivars of papaya for possible waterlogging tolerance. ‘PPI x ML-F2' was found to maintain the highest chlorophyll fluorescence and ‘Exotica' showed the lowest chlorophyll fluorescence.
URI: http://hdl.handle.net/11455/28723
其他識別: U0005-2408201121024700
Appears in Collections:園藝學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.