Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2873
標題: 整合奈米碳管之微型熱電發電器的製作與特性
Fabrication and Characterization of Thermoelectric Micro Generators with Carbon Nanotube
作者: 葉峻嘉
Yeh, Chun-Chia
關鍵字: 熱電偶;thermocouple;微型熱電發電器;CMOS-MEMS;奈米碳管;micro thermoelectric generator;CMOS-MEMS;carbon nanotubes
出版社: 機械工程學系所
引用: [1] http://iea.org/techno/etp/etp10/English.pdf [2] http://www.mobile01.com/topicdetail.php?f=568&t=3340690 [3] C. Y. Chu, M. C. Pan, “Transient Analysis and Experimental Validation of Thermal-Fluidic Fields on TFT-LCD TV Panels,” 12th International Conference on Electronics Packaging Technology Conference, pp. 346-352, 2006. [4] 廖瑋智,電腦的最佳散熱模式之效益分析,成功大學碩士論文,2008。 [5] J. Jakovenko, R. Werkhoven, J. Formanek, J. Kunen, P. Bolt and P. Kulha, “Thermal simulation and validation of 8W LED Lamp,” 12th International Conference on EuroSimE, pp. 1-4, 2011. [6] M. Strasser, R. Aigner, M. Franosch, G. Wachutka, “Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining,” Sensors and Actuators A: Physical, vol. 97-98, pp. 535-542, 2002. [7] H. Bottner, J. Nurnus and A. Gavrikov, “New Thermoelectric Components Using Microsystem Technologies,” Journal of Micro electromechanical Systems, Vol. 13, pp. 414-420, 2004. [8] M. Strasser, R. Aigner, C. Lauterbach, T. F. Sturm, M. Franosch and G. Wachutka, ” Micromachined CMOS thermoelectric generators as on-chip power supply,” Sensors and Actuators A: Physical, Vol. 114, pp. 362-370, 2004. [9] Y. Iwasaki and M. Takeda, “Development of flexible thermoelectric device:Improvement of device performance,” 2006 International Conference on Thermoelectrics, pp. 562-565, 2006. [10] T. Huesgen, P. Woias, N. Kockmann, “Design and fabrication of MEMS thermoelectric generators with high temperature efficiency,” Sensors and Actuators A: Physical, vol. 145-146, pp. 423-429, 2008. [11] E. Schwyter, W. Glatz, L. Durrer and C. Hierold, “Flexible Micro Thermoelectric Generator based on Electroplated Bi2+xTe3-x,” Design, Test, Integration and Packaging of MEMS/MOEMS, pp. 46-48, 2008. [12] J. Xie, C. Lee, H. Feng, “Design Fabrication and characterization of CMOS MEMS-Based Thermoelectric Power Generators,” Journal of Microelectromechanical Systems, Vol. 19, pp. 317-324, 2010. [13] H. B. Lee, H. J. Yang, J. H. We, K. Kim, K. C. Cho and B. J. Cho, “Thin-film thermoelectric module for power generator applications using a screen-printing method,” Journal of Electronic Materials, vol. 40, pp. 615-619, 2011. [14] C. M. Chen, I. Y. Huang, L. Y. Ma and T. E. Wu, “Development of a Novel Transparent Micro thermoelectric Generator for Solar Energy Conversion,” 2011 IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 976-979, 2011. [15] M. Strasser, R. Aigner, C. Lauterbach, T. F. Sturm, M. Franosch and G. Wachutka, “Micro machined CMOS TEG as on-chip power supply,” Sensors and Actuators A, vol. 144, pp. 362-370, 2004. [16] T. Toriyama, M. Yajima and S. Sugiyama, “Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile,” Proceedings of the IEEE Micro Electro Mechanical Systems, pp. 562-565, 2001. [17] S. M. Yang, T. Lee and C. A. Jeng, “Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process,” Sensors and Actuators A, vol. 153, pp. 244-250, 2009. [18] I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen and J. S. Kuo, “Development of low-cost micro-thermoelectric coolers utilizing MEMS technology,” Sensors and Actuators A: Physical, vol. 148, pp. 176-185, 2008. [19] D. Grgic, T. Ungan, M. Kostic and M. Reindl, “Ultra-low input voltage DC-DC converter for micro energy harvesting,” PowerMEMS 2009, pp. 265-268, 2009. [20] S. Lijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991. [21] http://nanoparticles-environment.wikispaces.com/4.3.3+Nano-filtration [22] 洪前福,多壁奈米碳管-高分子複合材料之電磁波遮蔽研究,清華大學碩士論文,2006。 [23] 李詩銓,奈米碳管之合成與電磁波屏蔽奈米複合材料之研究,東華大學碩士論文,2003。 [24] D. Boldor, N. M. Gerbo, W. T. Monroe, J. H. Palmer, Z. Li and A. S. Biris, “Temperature Measurement of Carbon Nanotubes Using Infrared Thermography,” Chemistry of Materials, pp. 4011-4016, 2008. [25] D. Bang, J. Lee, J. Park, J. Choi, Y. W. Chang, K. H. Yoo, Y. M. Huh and S. Haam, “Effectively enhanced sensitivity of a polyaniline –carbon nanotube composite thin film bolometric near-infrared sensor,” Journal of Materials Chemistry, pp. 3215-3219, 2012. [26] H. K. Moon, S. H. Lee and H. C. Choi, “In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes,” American Chemical Society Nano, pp. 3707-3713, 2009. [27] S. Ghosh, S. Dutta, E. Gomes and D. Carroll, “Increased Heating Efficiency and Selective Thermal Ablation of Malignant Tissue with DNA-Encased Multiwalled Carbon Nanotubes,” American Chemical Society Nano, pp. 2667-2673, 2009. [28] 石立節,奈米碳管酸純化前後表面特性之變化,中央大學碩士論文,2005。 [29] 林詩翔,聚吡咯多壁奈米碳管複合材料之備製與物性研究,中興大學碩士論文,2005。 [30] 王啟光,新型奈米碳管紅外線光感測元件製備,中興大學碩士論文,2010。 [31] 詹家俍,選擇性橫向奈米碳管之成長與其應用於溫度感測器之探討,成功大學碩士論文,2004。 [32] 許正達,奈米材料應用在散熱技術設計與量測,中央大學碩士論文,2009。 [33] P. H. Kao, P. J. Shih, C. L. Dai and M. C. Liu, “Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generator,” Sensors, vol.10, pp. 1315-1325, 2010. [34] 莊達人,VLSI 製造技術,高立圖書有限公司,2000。
摘要: 
本研究利用標準0.18 μm 1P6M CMOS製程技術設計和製作微型熱發電器,微型熱發電器由370組熱電偶串聯而構成,利用標準製程中的多晶矽層,透過摻雜形成 p-type 和 n-type 所組成的熱電偶。微型熱電發電器的效能取決於熱電偶冷端和熱端的溫度差,為了提高微型熱電發電器的發電性能,因此在熱電偶熱端上方堆疊高熱傳導係數的金屬鋁,且披覆上奈米碳管,用於接收外部熱源溫度,並搭配反應性離子蝕刻(RIE),將底部的矽基材掏空,使結構懸浮,利用低熱傳導率的空氣來防止熱量從熱電偶透過矽基材散失;冷端熱電偶則包覆於二氧化矽層中,利用二氧化矽低熱傳導率的特性隔絕熱源,使熱電偶兩端形成溫差。利用 ANSYS Workbench 有限元素軟體模擬微型熱電發電器,在接受到熱能時,內部所產生的溫度分佈與溫度梯度變化。實驗量測結果顯示,於400 K的熱源溫度下,未披覆奈米碳管的微型熱電發電器,產生的輸出電壓與輸出功率分別為為0.899 mV與1.72 pW;而披覆黑體薄膜後的微型熱電發電器,其輸出電與輸出功率分別提升至為1.56 mV和5.16 pW。微型熱電發電器在披覆奈米碳管後,電壓因子和功率因子分別為0.225 mV/K/mm2和0.745 pW/K/mm2。並整合蓄電電路,儲存串聯7組的微型熱電發電器所產生之電能,儲存的電能已可供給較低驅動電壓之電子元件。

This study presents a micro thermoelectric power generator fabricated by the standard 0.18 μm 1P6M (one polysilicon and six metals) CMOS (complementary metal oxide semiconductor) process. The micro thermoelectric power generator is composed of 370 thermocouples in series, and the thermocouples are formed by p-type and n-type polysilicon. The efficiency of the micro generator depends on the temperature difference between hot and cold parts of thermocouples. In order to achieve the best generation efficiency, the reactive ion etching (RIE) is used to release the hot part of thermocouples. Then, the hot part of the thermocouples is coated by MCNTs (Multi-walled carbon nanotubes). The cold part of the thermocouples is covered by silicon oxide that provides low thermal conductivity and thermal isolation. ANSYS Workbench is used to simulate the temperature distribution and the temperature gradient of the micro generator. The experimental results showed that the output voltage of thermoelectric generator without MCNTs film was 0.899 mV and the output power was 1.72 pW when temperature was 400 K. The output voltage and output power of the generator with MCNTs film were 1.56 mV and 5.16 pW, respectively, at the temperature of 400 K. The micro generator with the MCNTs film had a voltage factor of 0.225 mV/K/mm2 and a power factor of 0.745 pW/K2/mm2. Finally, the charging circuit is designed to carry out the storage of output power, and the power can be apply in the low power electronic component.
URI: http://hdl.handle.net/11455/2873
其他識別: U0005-2008201317133200
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.