Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/28733
標題: | 菊花花蕾培殖體利用農桿菌轉殖花色基因 Flower Bud as Explant for Agrobacterium tumefacien - mediated Transformation of Pigment Gene in Chrysanthemum. |
作者: | 陳彥銘 Chen, Yen-Ming |
關鍵字: | Chrysanthemum;菊花;Receptacle;Agrobacterium tumefacien - mediated;Pigment gene;Regeneration;總花托;農桿菌基因轉殖;花色基因;再生 | 出版社: | 園藝學系所 | 引用: | 王月華。2000。應用蝴蝶蘭癒傷組織進行基因轉殖之研究。國立臺灣大學園藝學研究所碩士論文。臺灣:台北。74 pp。 王啟正。2000。農桿菌在植物基因轉殖上的原理及應用(上)。花蓮區農業專訊 33:22-23。 王強生。2002。利用基因工程技術圓一個古老的夢。科學發展 351:18-23. 朱建鏞、江純雅。2004。菊花組織培養之誘變育種。種苗科技成果發表會專輯:137-144。 邱輝龍、范明才。1998。花青素與花色之表現。中國園藝 44:102-115。 夏奇鈮、蕭翌助、陳威臣、楊淑如。2004。抗生素在植物組織培養上之利用。科學農業 53:146-156。 許謙信。2004。品種選育與栽培技術。永續農業 20:22-24。 張淑芬、黃敏展。2000。菊花組織培養苗之變異。中國園藝 46:21-34。 楊淑蓉。2003。菊花基因轉殖之研究。國立高雄師範大學生物科學所碩士論文。臺灣:高雄。48 pp。 詹明才。1988。利用農桿腫瘤菌轉形馬鈴薯之研究。國立臺灣大學農藝學研究所碩士論文。臺灣:台北。72 pp.。 詹明才、張新雄。1991。農桿菌轉殖系統之影響因素。科學農業 39:249-255。 趙軍良、逯保德、徐鴻林、朱禎、趙美華、梁愛華。2005。酚類化合物對大白菜遺傳轉化效率之影響。華北農學報 20:19-22。 魏芳明、朱建鏞、黃敏展。2001。珈瑪射線在菊花誘變之利用。興大園藝 26:51-59。 蘇宗振。1999。植物基因轉殖之研究。科學農業 47:112-119。 齋藤清。1968。花的育種。誠文堂新光社。東京。 p.231-242。 Aida, R., S. Kishimoto, Y. Tanaka, and M. Shibata. 2000. Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci. 153: 33-42. Ando, T. and K. Murasaki. 1983. In vitro propagation of cyclamen by the use of etiolated petioles. Technol. Bull. Fac. Hort. Chiba Univ. 32: 1-5. Asen, S. 1976. Known factors responsible for infinite flower color variations. Acta Hortic. 63: 217-223. Asen, S. and P. S. Budin. 1966. Cyanidin 3- arabinoside-5-glucoside, an anthocyanin with a new glycosidic pattern, from flowers of ‘Red Wing’azaleas. Phytochem. 13: 1219-1223. Benediktsson, I., F. Kohler, and O. Schieder. 1991. Transient and stable expression of maker genes in cotransformed Petunia protoplasts in relation to X-ray and UV-irradiation. Transgenic Res. 1: 38-44. Broertjes, C. 1966. Mutation breeding of chrysanthemum. Euphytica 15: 156-162. Broertjes, C., P. Koene, and J. W. H. Van Veen. 1980. A mutant of a irradiation of progressive radiation-induced mutants in a mutation breeding programme with Chrysanthemim morifolium. Euphytica 29: 525-530. Bush, A. L. and S. G. Pueppke. 1991. Cultivar-strain specificity between Chrysanthemum morifolium and Agrobacterium tumefaciens. Physiol. Mol. Plant Pathol. 39: 309-323. Chen, L. J. and G. Hrazdina. 1981. Structural aspects of anthocyanin-flavonoid complex formation and its role in plant color. Phytochem. 20: 297-303. Countney-Gutterson, N., A. Otten, E. Firoozababy, M. Akerboom, C. Lemieux, and J. Nicholas. 1993. Production of genetically engineered color-modified chrysanthemum plant carring a homologous chalcone synthase gene and their field performace. Acta Hortic. 336: 57-62. De Jong, J. 1984. Genetic analysis in Chrysanthemum morifolium, I : flowering time and flower number at low and optimum temperation. Euphytica 33: 455-463. De Jong, J., W, Rademaker, and M. F. van Wordragen. 1993. Restoring adventitious shoot formation on Chrysanthemum leaf explants following cocultivation with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cul. 32: 263-270. De Vetten, N., J. Ter Horst, H. P. van Schaik, A. de Boer, and J. Mol. 1999. A cytochrome b5 is required for full activity of flavonoid 3’,5’-hydroxylase, a cytochrome P450 involved in the formation of blue colors. Proc. Natl. Acad. Sci. USA 96: 778-783. Dixon, R. A. and C. L. Steele. 1999. Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends Plant Sci. 4: 394-400. Dolgov, S. V., T. Y. Mitiouchkina, and K. G. Skryabin. 1997. Agrobacterial transformation of chrysanthemum. Acta Hortic. 441: 23-28. Ellul, P., B. Garcia-Sogo, B. Pineda, G. Rios, L. A. Roig, and V. Moreno. 2003. The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons ( Lycopersicon esculentum L. Mill.) is genotype and procedure depentent. Theor. Appl. Genet. 106: 231-238. Farzad, M., R. Griesbach, J. Hammond, M. R. Weiss, and H. G. Elmendorf. 2003. Different expression of three key anthocyanin biosynthetic genes in a color changing flower, Viola cornuta cv. Yesterday, Today and Tomorrow. Plant Sci. 165: 1333-1342. Fick, G. N. 1976. Genetics of floral color and morphology in sunflowers. J. Hered. 67: 227-230. Forkmann, G. 1991. Flavonoids as flower pigments: the formation of the natural spextrum and its extension by genetic engineering. Plant Breed. 106: 1-26. Gao, Y., B. Zhao, G.. Ding, and Q. Zhang. 2001. Shoot regeneration from stem and leaf explants of Dendranthema grandiflorum. J. Beijing Forestry Univ. 23:32-33. Grimsley, N.H., B. Hohn, T. Hohn, and R.M. Walden. 1986. Agroinfection, an alternative route for plant viral infection by using the Ti-plasmid. Proc. Natl. Acad. Sci. USA. 83:3282−3286. Hattori, K. 1992. The process during shoot regeneration in the receptacle culture of chrysanthemum (Chrysanthemum morifolium Ramat.). Japan J. Breed. 42: 227-234. Hoekema, A., B. S. De Pater, A. J. Fellinger, P. J. J. Hooykaas, and R. A. Schilperoort. 1984. The limited host range of an Agrobacterium tumefaciens strain extended by a cytokinin gene from a wide host range T-range. EMBO Journal 3: 3043-3047. Holton, T. A. and E. C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083. Horsch, R. B., J. E. Fry, N. L. Hoffman, D. Eichholtz, S. G.. Rogers, and R. T. Fraley. 1985. A simple and general method for transferring genes into plants. Science. 227: 1229-1231. Jordan, C. and R. Reimann-Philipp. 1983. Investigations on type and degree of polyploidy in Chrysanthemum morifolium Ramat. By genetical analysis of two flower color factors. Z. Pflanzenzuch. 91: 111-122. Karam N. S.,and M. Al-Majathoub. 2000. In vitro shoot regeneration from mature tissue of wild Cyclamen persicum Mill. Sci. Hortic. 86: 323~333. Kartzke, S., H. Saedler, and P. Meyer. 1990. Molecular analysis of transgenic plants derived from transformations of protoplasts at various stages of the cell cycle. Plant Sci. 14: 59-64. Kawase, K. and Y. Tsukamoto. 1976. Studies on flower color in Chrysanthemum morifolium, III: quantitative effects of major pigments on flower color variation, and measurement of color qualities of petals with a color difference meter. J. Japan Soc. Hort. Sci.. 45: 65-75. Kotilainen, M., Y. Helariutta, M. Mehto, E. Pollanen, V. A. Albert, P. Elomaa, and T. H. Teeri. 1999. GEG participates in the regulation of cell and organ shape during corolla and carpel development in Gerbera hybrida. Plant Cell 11: 1093-1104. Lai, Y. C., and L. F. O. Chen. 2002. Flow cytometric analysis of nuclear cell cycle phase in relation to plant regeneration in Petunia hybrida. Journal of Genetics and Molecular Biology. 13: 13-20. Langton, F. A. 1980. Chimerical structure and carotenoid inheritance in Chrysanthemum morifolium. Euphytica 29: 807-817. Lemieux, C. S., E. Firoozababy, K. E. P. Robinson. Agrobacterium-mediated transformation of chrysanthemum. In: de Jong J, Editor. Integration of in vitro techniques in ornamental plant breed. Wageningen: CPO Press, 1990. p.150-155. Marks, T. R. and S. E. Simpson. 1990. Reduced phenolic oxidation at culture initiation in vitro following the exposure of field-grown stock plant to darkness or low levels of irradiance. J. Hortic. Sci. 65: 103-111. Mazza, G.. and E. Miniati. 1993. Anthocyanins in fruits, vegetables, and grains. CRC Press. USA. p.1-28. Murasaki, K. and H. Tsurushima. 1988. Improvement of clonal propagation of cyclamen in vitro by the use of etiolated petioles. Acta Hortic. 226: 721-724. Nakajima, J., Y. Tanaka, M. Yamazaki, and K. Saito. 2001. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis. J. Biol. Chem. 276: 25797-25803. Natarella, N. J. and K. C. Sink. l971. The morphogenesis of double flowering in Petunia hybrida. J. Am. Soc. Hort. Sci. 96: 600-602. Nhut, D. T., B. V. Le, M. Tanaka, and K. T. T. Van. 2001. Shoot induction and plant regernation from receptacle tissue of Lilium longiflorum. Sci. Hortic. 87: 131-138. Nugent, P. E. and R. J. Snyder. 1967. The inheritance of floret doublens floret center color, and plant habit in Pelargonium hortorum Bailey. Proc. J. Am. Soc. Hort. Sci. 91: 680-690. Pavingerova, D., J. Dostal, R. Biskova, and V. Benetka. 1994. Somatic embryogenesis and Agrobacterium-mediated transformation of chrysanthemum. Plant Sci. 97: 95-101. Petty, L. M., N. P. Harberd, I. A. Carre, B. Thomas, and S. D. Jackson. 2003. Expression of the Arabidopsis gai under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci. 164: 175-182. Pillai, V. and L. Zulkifli. 2000. Somaclonal variation in Chrysanthemum morifolium generated through petal culture. J. Trop. Agric. Food Sci. 28: 115-120. Raghava, S. P. S. and S. S. Negi. 2001. Inheritance of flower type and doubleness in China aster. J. Ornamental Hort. (New Series) 4: 7-12. Saito, K., M. Kobayashi, Z. Gong, Y. Tanaka, and M. Yamazaki. 1999. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase : molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 17: 181-189. Saunders, E. R. 1917. Studies on the inheritance of doubleness in flowers II. Meconopsis, Althea, and Dianthus. J. Genet. 6: 165-184. Shao, H. S. J. H. Li, X. Q. Zheng, and S. C. Chen. 1994. Cloning of the LFY Cdna From Arabidopsis thaliana and its transformation to Chrysanthemum morifolium. Acta Bot. Sin. 41: 268-271. Sherman, J. M., J. W. Moyer, and M.E. Daub. 1998. A regeneration and Agrobacterium-mediated transformation system for genetically diverse chrysanthemum cultivars. J. Am. Soc. Hort. Sci. 123: 189-194. Shinoyama, H., M. Komano, Y. Nomura, and T. Kazuma. 2000. Stable Agrobacterium-mediated transformation of chrysanthemum. Bull Fukui Agric. Exp. Stn. 35: 13-21 Shinoyama, H., M. Komano, Y. Nomura, and Y. Nagai. 2002. Introduction of delta-endotoxin gene of Bacillus thuringiensis to chrysanthemum for insent resistance. Breed Sci. 52: 43-50. Shirasawa, N., T. Iwa, S. Nakamura, and R. Honkura. 2000. Transformation and transgene expression of chrysanthemum. Bull. Miyagi. Prefect. Agric. Res. Cent 67: 15-20. Skirvin, R. M. and J. Janick. 1976. Tissue culture-induced variation in secented Pelargonium spp. J. Am. Soc. Hort. Sci. 101: 281-290. Stovel, G., H. Ben-Meir, M. Ovadis, H. Itzhaki, and A. Vainstein. 1998. RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor. Appl. Gene. 96: 117-122. Strack, D. and V. Wray. 1989. Anthocyanins. In: Method in Plant Biochemistry. Vol. I. Harborne, J. B. ed. Academic Press USA. p. 325-356. Sutter, E. and R. W. Langhans. 1981. Abnormalities in Chrysanthemum regenerated from long cultures. Ann. Bot. 48: 559-568. Takatsu, Y., H. Tomotsune, M. Kasumi, and F. Sukuma. 1998. Differences in adventitious shoot regeneration capacity among Japanese chrysanthemum cultivars and the improved protocol for Agrobacterium-mediated genetic transformation. J. Jpn. Soc. Hort. Sci. 67: 958-964. Teixeira da silva, J. A. 2003. Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnology Advances . 21: 715-766. Teixeira da silva, J. A. 2004. Evaluation of carbon sources as positive selection agents for chrysanthemum (Dendranthema × grandiflorum) transformation. New Zealand J. Crop Hortic. Sci. 32: 55-67. Thomas, P. and M. B. Ravindra. 1997. Shoot tip culture in mango: Influence of medium, genotype, explant factors, season and decomtamunation treatments on phenolic exudation, explant survival and axenic culture establishment. J. Hortic. Sci. 72: 713-722. Todd, J. J. and L. O. Vodkin. 1993. Pigmented soybean(Glycine max)seed coats accumulate proanthocyanidins that bind RNA. Plant Physiol. 102: 663-670. Tzfira, T. and V. Citovsky. 2002. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends in Cell Biology 12: 121-129. Van der Krol, A. R. and N.-H. Chua. l993. Flower development in petunia. Plant Cell 5: 1195-1203. Villemont, E., F. Dubois, R. S. Sangwan, G. Vasseur, Y. Bourgeols, and B. S. Sangwan-Norreel. 1997. Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201: 160-172. Wang, Q., H. Tang, and G. Zhou. 1994. Phenol induced browning and establishment of shoot-tip explant of ‘Fuji’apple and ‘Jinhua’ pear cultured in vitro. J Hortic. Sci. 69: 833-839. Weiss, D. and A. H. Halevy. 1989. Stamens and gibberelin in the regulation of corolla pigmentation and growth in Petunia hybrida. Planta 179: 89-96. Wilkinson, M., J. G. Sweeny, and G. A. Iacobucci. 1997. J. Chromatogt. 132: 349-351. Wit, F. 1937. Contributions to the genetics of the China aster-Genetic 19: 1-104. Zambre, M., N. Terryn, J. De Clercq, S. De Buck, W. Dillen, M. van Moutagu, D. van Der Straeten, and G. Angenon. 2003. Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cell. Planta 216: 580-586. Zheng, Z. L., Z. Yang, J.C. Jang, and J. D. Metzger. 2001. Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J. Am. Soc. Hort. Sci. 126: 19-26. | 摘要: | 菊花‘Red Windmill’、‘Pink Flame’、‘Linker’、‘Margenta Linker’葉片培殖體培養在含hygromycin之培養基時,當hygromycin濃度達25 mg/L時,死亡率達到100%;而濃度為20 mg/L時,致死率仍達到87%以上;濃度在10 mg/L時,除‘Margenta Linker’培殖體致死率為66%外,其他品種致死率均達到80%以上。 不同花蕾培殖體型式轉殖花色基因後再生情況,發現以完整總花托再生芽體情況最佳,其次分別為去除小花未去總苞之花蕾上半部組織與總花托之上半部。含有總苞組織,轉殖花色基因後培殖體褐化率、農桿菌復發程度均為最高。以花瓣尖端著色但未超過1㎝的花蕾作為培殖體,存活培殖體數量最多。 菊花器官培殖體經農桿菌轉殖花色基因後,發現以花蕾培殖體存活率較高,農桿菌復發率較低,再生芽體數量較多。培殖體使用莖段或小花梗經農桿菌轉殖花色基因後,均無法再生芽體。‘Red Windmill’、‘Pink Flame’、‘Linker’、‘Margenta Linker’轉殖花色基因後,每片培殖體再生芽體數量分別為0.76、0.76、0.33、1,遠高於葉片及葉柄培殖體。 花蕾培殖體轉殖花色基因再生之植株,經抗生素hygromycin篩選後總共獲得149株植株,從當中選拔出34株花色變異植株。其中包含了含有hpt基因之轉殖植株6株,hpt & ANS基因轉殖株2株,及hpt & F3’5’H基因轉殖株1株。葉片轉殖花色基因再生之植株試驗,經抗生素hygromycin篩選後獲得20株植株,其中包含hpt & F3’5’H基因轉殖株7株。 選拔後34株花色變異植株,其中轉入hpt & ANS基因的‘Margenta Linker’轉殖株2株無法正常開花。而轉入hpt & F3’5’H基因的‘Biaritz’轉殖株1株,經花青素分析後,並未發現飛燕草素存在。使用葉片獲得hpt & F3’5’H基因的‘Linker’轉殖株7株,同樣無飛燕草素。 The lethal rate of leaf explants in Chrysanthemum ‘Red windmill’, ‘Pink Flame’, ‘Linker’ and ‘Margenta Linker’ was up to 100% when they were cultured in medium containing hygromycin at 25 mg/L. When hygromycin in medium decreased to 20 mg/L, the leathal rate was still over 87%. As well as they were cultured on 15 mg/L hygromycin medium, the lethal rate was over 80%, except ‘Margenta Linker’ explants (66%). Floral explants with involucre were easier browning and relapsing than those without involucre. And the whole receptacle explants regenerated more shoots than parts of receptacle explants regenerated. In addition, flower bud with 1㎝ ray florets had higher survival rate. After transforming pigment gene by Agrobacterium tumefacien-mediated, flower bud explants were more survival and less relapsing, and regenerated more shoots. Each receptacle explant of chrysanthemum of Red windmill’, ‘Pink Flame’, ‘Linker’ and ‘Margenta Linker’ regenerated 0.76, 0.76, 0.33, and 1, respectively. The regeneration efficiency of receptacle was higher than leaf and petiole explant. Through hygromycin selection, there were 149 plants regenerated from floral explants. There were 34 plants with different types of flower, containing 6 plants with hpt gene, 2 plants with hpt and ANS genes and 1 plant with hpt and F3’5’H genes. There were also 20 plants from leaf explants, containing 7 plants with hpt and F3’5’H. In the 8 plants with hpt and F3’5’H genes, there were no delphinidin detected. And the 2 plants with hpt and ANS genes from ‘Margenta Linker’ didn’t develop flower normally. |
URI: | http://hdl.handle.net/11455/28733 | 其他識別: | U0005-2407200610231600 |
Appears in Collections: | 園藝學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.