Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2874
標題: 整合電路之二氧化鈦微濕度感測器
Titanium dioxide humidity microsensors integrated with circuit
作者: 胡育智
Hu, Yu-Chih
關鍵字: CMOS-MEMS;CMOS-MEMS;二氧化鈦;酸處理;濕度感測器;Titanium dioxide;Acid treatment;Humidity sensor
出版社: 機械工程學系所
引用: [1] A. V. Arundel, E. M. Sterling, J. H. Biggin and T. D. Sterling, “Indirect health effects of relative humidity in indoor environments,” Environ Health Perspect, Vol. 65, pp. 351-361, 1986. [2] E. Traversa, “Ceramic sensors for humidity detection: the state-of-the-art and future developments,” Sensors and Actuators B: Chemical, Vol. 23, pp.135-156, 1995. [3] 許桂樹,陳克群和李怡銘,感測器原理與應用,全華圖書股份有限公司,2007。 [4] A. Schroth, K. Sager, G. Gerlach and A. Haberli, “A resonant polyimide-based humidity sensor,” Sensors and Actuators B: Chemical, Vol. 34, pp. 301-304, 1996. [5] E. I. Radeva, I. N. Martev, D. A. Dechev, N. Ivanov, V. N. Tsaneva and Z. H. Barber, “Sensitivity to humidity of TiO2 thin films obtained by reactive magnetron sputtering,” Surface & Coatings Technology, Vol. 201, pp. 2226-2229, 2006. [6] Y. Y. Qiu, C. A. Leme, L. R. Alcacer and J. E. Franca, “A CMOS humidity sensor with on-chip calibration,” Sensors and Actuators A: Physical, Vol. 92, pp. 80-87, 2001. [7] S. T. McGovern, G. M. Spinks and G. G. Wallace, “Micro-humidity sensors based on a processable polyaniline blend,” Sensors and Actuators B: Chemical, Vol. 107, pp. 657-665, 2005. [8] K. P. Biju and M. K. Jain, “Sol–gel derived TiO2-ZrO2 multilayer thin films for humidity sensing application,” Sensors and Actuators B: Chemical, Vol. 128, pp. 407–413, 2008. [9] K. P. Biju and M. K. Jain, “Effect of crystallization on humidity sensing properties of sol–gel derived nanocrystalline TiO2 thin films,” Thin Solid Films, Vol. 516, pp. 2175-2180, 2008. [10] H. Zhang, Z. Li, L. Liu, C. Wang, Y. Wei and A. G. MacDiarmid, “Mg2+/Na+-doped rutile TiO2 nanofiber mats for high-speed and anti-fogged humidity sensors,” Talanta, Vol. 79, pp. 953-958, 2009. [11] Q. Qi, T. Zhang, Q. Yu, R. Wang, Y. Zeng, L. Liu and H. Yang, “Properties of humidity sensing ZnO nanorods-base sensor fabricated by screen-printing,” Sensors and Actuators B: Chemical, Vol. 133, pp. 638-643, 2008. [12] A. H. Zare and S. Mohammadi, “Silver Doped Titanium Dioxide Humidity Sensor,” Materials Science and Engineering, Vol. 17, pp. 12-15, 2011. [13] A. Erol, S. Okur, B. Comba, O. Mermer and M. C. Arıkan, “Humidity sensing properties of ZnO nanoparticles synthesized by sol–gel process,” Sensors and Actuators B: Chemical, Vol. 145, pp. 174-180, 2010. [14] S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh nad I-C. Chen, “A ZnO nanowire-based humidity sensor,” Superlattices and Microstructures, Vol. 47, pp.772-778, 2010. [15] Z. Wang, L. Shi1, F. Wu, S. Yuan, Y. Zhao and M. Zhang, “The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor,” Nanotechnology, Vol. 22, pp. 275502, 2011. [16] M. Su, J. Wanga, H. Dua, P. Yaoa, Y. Zhenga and X. Li, “Characterization and humidity sensitivity of electrospun ZrO2-TiO2 hetero-nanofibers with double jets,” Sensors and Actuators B: Chemical, Vol.161, pp. 1038-1045, 2012. [17] E. I. Radeva, I. N. Martev, D. A. Dechev, N. Ivanov, V. N. Tsaneva and Z. H. Barber, “Sensitivity to humidity of TiO2 thin films obtained by reactive magnetron sputtering,” Surface & Coatings Technology, Vol. 201, pp. 2226-2229, 2006. [18] F. Uchikawa and K. Shimamoto, “Time variability of surface ionic conduction on humidity-sensitive SiO2 films,” American Ceramic Society Bulletin, Vol. 64, pp.1137-1141, 1985. [19] B.C. Yadav, R. Srivastava and C.D. Dwivedi, “Synthesis and characterization of ZnO–TiO2 nanocomposite and its application as a humidity sensor,” Philosophical Magazine, Vol. 88, pp. 1113-1124, 2008. [20] I. Onal, S. Soyer and S. Senkan, “Adsorption of water and ammonia on TiO2-anatase cluster models,” Surface Science, Vol. 600, pp. 2457-2469, 2006. [21] C. C. Tsai and H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments,” Chemistry of Materials, Vol. 18, pp. 367-373, 2006. [22] A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio and H. Aritani, “Synthesis of nanotube from a layered H2Ti4O9 ‧H2O in a hydrothermal treatment using various titania sources,” Journal of materials science, Vol. 39, pp. 4239-4245, 2004. [23] http://zh.wikipedia.org/wiki [24] V. Aroutiounian, “Metal oxide hydrogen, oxygen, and carbon monoxidesensors for hydrogen setups and cells,” International Journal of Hydrogen Energy, Vol. 32, pp. 1145-1158, 2007. [25] E. Comini, “Metal oxide nano-crystals for gas sensing,” Analytica Chimica Acta, Vol. 568, pp. 28-40, 2006. [26] N. Barsan and U. Weimar, “Conduction Model of Metal Oxide Gas Sensors,” Journal of Electroceramics, Vol. 7, pp. 143-167, 2001. [27] A. M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, “Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors,” Sensors and Actuators B: Chemical, Vol 103, pp. 312-317, 2004. [28] A. M. Ruiz, A. Cornet, G. Sakai, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, “Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments,” Sensors and Actuators B: Chemical, Vol.108, pp. 34-40, 2005. [29] Y. J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose and S. A. Akbar, “Aluminum-doped TiO2 nano-powders for gas sensors,” Sensors and Actuators B: Chemical, Vol. 124, pp. 111-117, 2007. [30] A. Teleki, N. Bjelobrk and S. E. Pratsinis, “Flame-made Nb- and Cu-doped TiO2 sensors for CO and ethanol,” Sensors and Actuators B: Chemical, Vol. 130, pp. 449-457, 2008. [31] Z. M. Seeley, A. Bandyopadhyay and S. Bose, “Influence of crystallinity on CO gas sensing for TiO2 films,” Materials Science and Engineering: B, Vol. 164, pp. 38-43, 2009. [32] Z. M. Seeley, A. Bandyopadhyay and S. Bose, “Titanium dioxide thin films for high temperature gas sensors,” Thin Solid Films, Vol. 519, pp.434-438, 2010. [33] B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani and E. -K. Suh, “TiO2 thin film gas sensor for monitoring ammonia,” Materials Characterization, Vol. 58, pp. 680-684, 2007. [34] M. Sanchez, R. Guirado and M. E. Rincon “Multiwalled carbon nanotubes embedded in sol–gel derived TiO2 matrices and their use as room temperature gas sensors,” Journal of Materials science: Materials in Electronics, Vol. 18, pp.1131-1136, 2007. [35] Y. Lia, W. Wlodarskib, K. Galatsisb, S. H. Moslihb, J. Colec, S. Russoc and N. Rockelmannd “Gas sensing properties of p-type semiconducting Cr-doped TiO2 thin films,” Sensors and Actuators B: Chemical, Vol. 83, pp. 160-163, 2002. [36] N. A. Hardan, M. J. Abdullah, A. A. Aziz and H. Ahmad, “Low-temperature hydrothermal synthesis of flower-like ZnO microstructure and nanorod array on nanoporous TiO2 film,” Applied Surface Science, Vol. 256, pp. 3468-3471, 2010. [37] M. H. Seo, M. Yuasa, T. Kida, J. S. Huh, K. Shimanoe and N. Yamazoe, “Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes,” Sensors and Actuators B: Chemical, Vol. 137, pp. 513-520, 2009. [38] Y. L. Wang, S. Tan, J. Wang, Z. J. Tan, Q. X. Wu, Z. Jiao and M. H. Wu, “The gas sensing properties of TiO2 nanotubes synthesized by hydrothermal method,” Chinese Chemical Letters, Vol. 22, pp.603-606, 2011. [39] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and G. A. Crimes, “Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure,” Advanced Materials, Vol. 15, pp. 624-627, 2003. [40] A. Z. Sadek, J. G. Partridge, D. G. McCulloch, Y. X. Li, X. F. Yu, W. Wlodarski and K. K. zadeh, “Nanoporous TiO2 thin film based conductometric H2 sensor,” Thin Solid Films, Vol. 518, pp. 1294-1298, 2009. [41] S. Yin, R. Li, Q. He and T. Sato, “Low temperature synthesis of nanosize rutile titania crystal in liquid media,” Materials Chemistry and Physics, Vol. 75, pp.76-80, 2002. [42] M. K. Ram, O. Yavuz, V. Lahsangah and M. Aldissi. “CO gas sensing from ultrathin nano-composite conducting polymer film,” Sensors and Actuators B: Chemical, Vol. 106, pp.750-757, 2005. [43] H. Cheng, J. Ma, Z. Zhao and L. Qi, “Hydrothermal preparation of uniform nanosize rutile and anatase particles,” Chemistry of Materials, Vol. 7, pp.663-671, 1995. [44] 趙素慧,CdS/TiO2複合中空球製備與光催化效能之研究,逢甲大學材料與製造工程化學工程碩士論文,2006。 [45] F. kremer and G. Lagaly, Progress in colloid and polymer science, Vol. 115, pp.152, 2000. [46] 鄭智鴻,量身訂做的二氧化鈦光觸媒之合成及應用,國立成功大學化學工程學系碩士論文,2006。 [47] C. Wu, Y. Yue, X. Deng, W. Hua and Z. Gao, “Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations,” Catalysis Today, Vol. 93-95, pp.863-869, 2004. [48] 行政院衛生署 (http://www.doh.gov.tw) [49] 美國國家消防協會NFPA (National Fire Protection Association) [50] F. Li, J. Xu, X. Yu, L. Chen, J. Zhu, Z. Yang, and X. Xin, “One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles,” Sensors and Actuators B: Chemical, Vol. 81, pp. 165-169, 2002. [51] M. H. Seoa, M. Yuasa, T. Kida, J. SooHuh, K. Shimanoe and N. Yamazoe, “Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes”, Sensors and Actuators B: Chemical, Vol. 137, pp. 513–520, 2009. [52] V. E. Henrich and P. A. Cox, “The Surface Science of Metal Oxides,” Cambridge University Press, Cambridge, pp. 312-316, 1994. [53] M. I. Baratona and L. Merharib, “Surface chemistry of TiO2 nanoparticles: influence on electrical and gas sensing properties,” Journal of the European Ceramic Society, Vol. 24, pp. 1399-1404, 2004. [54] D. Koziej, K. Thomas, N. Barsan, F. Thibault-Starzyk and U. Weimar, “Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors–Operando studies,” Catalysis Today, Vol. 126, pp. 211-218, 2007. [55] A. M. Ruiz, A. Cornet, K. Shimanoe, J. R. Morante and N. Yamazoe, “Transition metals (Co, Cu) as additives on hydrothermally treated TiO2 for gas sensing,” Sensors and Actuators B: Chemical, Vol 109, pp. 7-12, 2005.
摘要: 
本研究利用微機電系統(CMOS-MEMS)技術製作整合電路之微濕度感測器,利用溶膠-凝膠法調製奈米顆粒之二氧化鈦,並透過酸或鹼進行表面處理提升二氧化鈦對濕度之靈敏度,不僅製備方法容易,且成本較低,將製備完成之感測薄膜披覆於整合型晶片之梳狀電極中,以完成整合型微濕度感測器的目標。當二氧化鈦吸附環境中之水分子後,使感測薄膜內載子濃度上升,造成其電阻隨著導電率的提升而下降,並整合感測電路將此電阻變化轉換為輸出電壓,藉此量測環境中相對濕度,微濕度感測器之感測區總面積為950 × 700 μm2,於室溫下量測相對濕度由30 %RH至90 %RH時,薄膜電阻由236.3 kΩ下降至68 kΩ,總變化量為168.3 kΩ;當相對濕度由55 %RH至75 %RH時,反應與回復時間分別為 30秒、52秒;整合感測電路時,輸出電壓由2.29 V下降至1.90 V,總變化量為390 mV,感測靈敏度約為6.5 mV/%RH;結果顯示經過酸處理之二氧化鈦可提升對濕度的靈敏度約20.6 %。

This study presents the fabrication of a micro humidity sensor integrated with a sensing circuit using the complementary metal oxide semiconductor (CMOS) process. Nanoparticles titanium dioxide prepared by the sol-gel method is used as the sensing material, and titanium dioxide treated by acid solution improvs the sensitivity for the humidity. The advantages of the humidity sensor are easy fabrication, low cost and operation at room temperature. The titanium dioxide is coated on the comb-like electrodes of sensing region, integrated micro-humidity sensor. When the titanium dioxide exposes to water molecules in the environment, the film absorbs water molecules leading to change the concentration of the irons, therefore the resistance decreased with increasing conductivity. The sensing circuit is used to convert the resistance of the humidity sensor into the output voltage.
The experimental results showed that the sensing resistor of the sensor increased from 236.3 kΩ to 68 kΩ in the humidity range of 30-90 %RH at 25 ℃, and the output voltage varied from 2.29 V to 1.90 V as the relative humidity changed from 30 %RH to 90 %RH at 25 ℃. The sensitivity of the humidity sensor was about 6.5 mV/%RH. Experiments show that the titanium dioxide with acid treatment can enhance the humidity sensitivity of about 20.6 %.
URI: http://hdl.handle.net/11455/2874
其他識別: U0005-1308201217334800
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.