Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2885
標題: 橋式壓電感測器在真空壓力量測之研究
Development of clamped-clamped beam type piezoelectric sensor for vacuum pressure measurement
作者: 林哲宇
Lin, Che-Yu
關鍵字: 壓電感測器;piezoelectric sensors;懸臂樑;真空壓力;阻尼;cantilever;vacuum pressure;damping ratio
出版社: 機械工程學系所
引用: [1]陳建人,真空技術與應用,行政院國家科學委員會精密儀器發展中心,2001 [2]蘇青森,真空技術精華,五南圖書出版股份有限公司,2004 [3]M. Esashi, 1996, “Silicon micromachining for integrated microsystems,” Vacuum, 47, 469-474 [4]A. Brill, Y. Me-Bar, M. Siman, O. Sadot and G. Ben-Dor, 2011, “Diaphragm gauge for measuring explosive impulse,” International Journal of Impact Engineering, 38, 765-769 [5]F. T. Zhang, Z. Tang, J. Yu and R. C. Jin, 2006, “A micro-Pirani vacuum gauge based on micro-hotplate technology,” Sensors and Actuators A, 126, 300-305 [6]F. Volklein, M. Schild, A. Meier and F. Wiesbaden, 2008, “Microelectromechanical sensors for measuring gas pressure,” Journal of Physics: Conference Series, 100, Part 9 [7]J. R. Dobrott and R. M. Oman, 1970, “Ionization gauge using a SiC p-n junction electron emitter,” Journal of Vacuum Science and Technology, 7, 214-215 [8]R. O. Woods, 1973, “Miniaturizing the cold cathode vacuum gauge,” Journal of Vacuum Science and Technology, 10, 433-435 [9]T. Gronych, R. Ulman, L. Peksa and P. Repa, 2004, “Measurements of the relative momentum accommodation coefficient for different gases with a viscosity vacuum gauge,” Vacuum, 73, 275-279 [10]S. Bianco, M. Cocuzza, S. Ferrero, E. Giuri, G. Piacenza, C. F. Pirri, A. Ricci, L. Scaltrito, D. Bich, A. Merialdo, P. Schina and R. Correale, 2006, “Silicon resonant microcantilevers for absolute pressure measurement,” Journal of Vacuum Science & Technology B, 24, 1803-1809 [11]K. Yohei and K. Akira, 2007, “Quartz friction gauge for monitoring the concentration and viscosity of NaturalHy mixtures,” Journal of vacuum science and technology A, 25, 1248-1250 [12]H. Sumali and T. G. Carne, “Air-drag damping on micro-cantilever beams,” Sandia National Lab Technical Report [13]D. C. Witt, 1997, “Spinning-rotor vacuum gauge with electrostatic suspension,” Metrologia, 36, 607-612 [14]陳峰志、周榮源、廖鶯鶯、林進祥,微熱離子真空計發展現況,真空科技,十二卷二期,2000 [15]J. K. Fremerey, 1982, “Spinning rotor vacuum gauges,” Vacuum, 32, 685-690 [16]O. E. Meyer, 1865, “Ueber die innere reibung der gase,” Annalen der Physik, 201, 564-599 [17]J. L. Hogg, 1906, “Friction and force due to transpiration as dependent on pressure in gases,” Proceedings of the American Academy of Arts and Sciences, 42, 115-146 [18]M. Knudsen, The Kinetic Theory of Gases, Methuen, London (1934) [19]R. Evrard and P. Beaufils, 1965, “Calibration of ionization gages using the diamagnetic suspension absolute gage,” Vide (France), 20, 116-120 [20]G. Comsa, J. K. Fremerey, B. Lindenau, G. Messer and P. Rohl, 1980, “Calibration of a spinning rotor gas friction gauge against a fundamental vacuum pressure standard,” Journal of Vacuum Science and Technology, 17, 642-644 [21]陳冠綸、童麒嘉、鄭雅琪、王瑜婷、林明澤,新型廣域型真空量測技術,第十五屆奈米工程暨微系統技術研討會,國立台北科技大學,2011 [22]彭泰龍,「壓電式發電裝置研究」,碩士論文,國立中興大學機械工程研究所,台中,2007 [23]張翔,「應用壓電片於有與無缺陷固定樑之模態分析」,碩士論文,國立高雄海洋科技大學輪機工程研究所,高雄,2005 [24]F. J. Shaker, 1975, “Effect of axial load on mode shapes and frequencies of beams,” Lewis Research Center Report NASA-TN-8109 [25]陳奇劭,「雙邊固定式懸臂樑壓電變壓器」,碩士論文,國立中興大學機械工程研究所,台中,2011 [26]莊峻佑,「鋯鈦酸鉛薄膜製程參數對機電性質之影響」,碩士論文,國立中興大學機械工程研究所,台中,2010 [27]薛竣鴻,「低溫沉積二氧化矽和鋯鈦酸鉛複合薄膜於可撓性基板之研究」,碩士論文,國立中興大學機械工程研究所,台中,2009 [28]張爵堂,「利用紫外線圖案化鋯鈦酸鉛薄膜」,碩士論文,國立中興大學機械工程研究所,台中,2011
摘要: 
  本論文研製一橋式壓電真空壓力感測器,由一層壓電材料層(PZT)與基板層(銅)組合而成,並呈兩端固定之懸臂樑形式,壓電材料層與基板層尺寸皆為20mm×5mm×200μm。有兩對電極分布在壓電材料層的上表面與下表面,分別置於懸臂樑的兩端,其中一對電極位於懸臂樑的固定邊界旁,作激盪懸臂樑產生共振之用,另外一對電極則位於另一邊固定邊界旁,作為一作汲取振動能量轉換回電訊號之用。
  由實驗結果可以得知,本研究之壓力感測器量測範圍為6.5×10-6~760Torr,由於不同的真空壓力下氣體黏滯性所產生的阻力不同,而隨著懸臂樑擺動的電壓輸出便會不同。我們將實驗結果利用半功率法計算求出阻尼比,此量測的阻力包含了結構阻尼與氣體阻尼的影響。結構阻尼為材料產生應變時所消耗的能量,而氣體阻尼為外部氣體壓力改變造成之阻尼。由實驗結果得知,感測器輸出電壓與氣體阻尼成正比關係,可以直接由電壓輸出值直接求得真空壓力。另外也進行不同氣體的量測結果,本研究利用氮氣與氬氣做比對,得知氬氣對結構所造成的阻尼比較氮氣大,而壓電輸出、阻尼比皆與真空壓力有相同趨勢。

  In this thesis, a clamped-clamped beam type piezoelectric vacuum pressure sensor was developed. The piezoelectric beam fixed at both ends consists of a PZT layer perfectly bonded to the copper substrate. The dimensions of the PZT layers and copper substrate are both 20mm × 5mm × 200μm. Two pairs of electrodes cover the surfaces of the PZT at the bottom and top layers near both ends. Input voltage was applied at one pair of electrodes to vibrate piezoelectric beam and output voltage was measured at the other pair of electrodes.
  Experimental results showed that developed pressure sensor has a wide range from 6.5×10-6 to 760Torr. Output voltage generated by vibrations of beams which were varied by viscous gas damping forces acting on the beams in the vacuum. Damping forces can be calculated from damping ratio by half power method experimentally. Damping ratio of sensor includes the effect of strain rate damping and viscous gas damping. The strain rate damping is assumed to be proportional to the bonding stiffness of beam and gas damping is assumed to be changed by the pressure. Experimental results showed that output voltages of sensors were proportional to gas damping ratio. It indicated vacuum pressures can be estimated from output voltage. Vacuum pressures of nitrogen and argon are also compared. Experimental results showed that the gas damping ratio of argon is greater than the damping ratio of nitrogen. Piezoelectric outputs and damping ratios are in the same trend with the vacuum pressures.
URI: http://hdl.handle.net/11455/2885
其他識別: U0005-2908201222352900
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.