Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28879
標題: 嫁接絲瓜與南瓜砧木對''碧華''與''粉青''苦瓜植株生長與營養生理之研究
Studies on the Plant Growth and Nutritional Physiology of ''Luxuriance'' and ''Fen Ching'' Bitter Gourds (Momordica charantia L.) Grafted onto Pumpkin (Cucurbita moschata Duch.) or Luffa (Luffa cylindrica (L.) Rome.)
作者: 施驊倫
Shi, Hua Lun
關鍵字: bitter qourd;苦瓜;luffa;squash;graft;南瓜;絲瓜;木質液;嫁接
出版社: 園藝學系所
引用: 王勝鴻。1978。接木不親和性。科學農業 26:241- 246。 米莫爾、吳登琳、阮育奇。1994。番茄嫁接對淹水之影響。科學農業 42(3,4):57- 64。 林天枝、洪澨堂。1992。苦瓜嫁接於絲瓜之栽培技術。台中區農業專訊10月1期:9-13。 吳明哲、林茂維。1998。茄果類蔬菜嫁接育苗試驗。中國園藝 44:160- 167。 卓俊銘。2001。苦瓜嫁接絲瓜根砧耐淹水機制之研究。國立中興大學園藝學研究所博士論文。184pp。 柯勇。2002。植物生理學。藝軒圖書出版社。台北。762pp。 周寶利、林桂榮、李寧義。1997。蔬菜嫁接栽培。中國農業出版社。140pp。 郁宗雄。1977。苦瓜。瓜類栽培。豐年出版社。129-135。 黃智賢。2003。‘福芳’與‘銘星’甜椒嫁接技術及嫁接植株生育之研究。國立中興大學園藝學研究所碩士論文。68pp。 黃圓滿。1999a。蔬菜作物的嫁接技術。台南區農業專訊 30:9-14。 黃圓滿。1999b。洋香瓜嫁接方式及種苗性狀探討。蔬菜作物試驗研究彙 9:59- 63。 戴順發。2003。茄科蔬菜嫁接親和性及植株生育之研究。國立中興大學園藝學研究所博士論文。207pp。 戴順發、張武男。1997。蔬菜嫁接之研究與發展。科學農業 45(9,10):266-274。 鍾曉玲。2006。番茄不同嫁接組合植株對礦物營養之吸收與轉運之影響。國立中興大學園藝學研究所碩士論文。101pp。 Achhireddy, N. R., L. Beevers, and J. S. Fletcher. 1983. Studies on the nitrate reductase activities of the fruit and the source leaf in pepper. Hort. Sci. 18: 903- 905. Ahn, S. J., Y. J. Im, G. C. Chung, B. H. Cho, and S. R. Suh. 1999. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low temperature. Sci. Hort. 81: 397- 408. Andrews, M., J. I. Sprent, J. A. Raven, and P. E. Eady. 1999. Relationships between shoot to root ratio, growth and leaf soluble protein concentration of Pisum sativum, Phaseolus vulgaris and Triticum aestivum under different nutrient deficiencies. Plant Cell Environ. 22:949- 958. Asahina, M., H. Iwai, A. Kikuchi, S. Yamaguchi, Y. Kamiya, H. Kamada, andS. Satoh. 2002. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol. 129:201– 210. Atkinson, C. J., M. A. Else, L. Taylor, and C. J. Dover. 2003. Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple. J. Exp. Bot. 54:1221- 1229. Bais, A. J., P. J. Murphy, and I. B. Dry. 2000. The molecular regulation of stilbene phytoalexin biosynthesis in Vitis vinifera during grape berry development. Aust. J. Plant Physiol. 27:425- 433. Behboudian, N. M., R. R. Walker, and E. Torokfalvy. 1986. Effects of water stress and salinity on photosynthesis of Pistachio. Sci. Hort. 29:251- 261. Biles, C. L., R. D. Martyn, and H. D. Wilson. 1989. Isoenzymes and general proteins from various watermelon cultivars and tissue types. Hort. Sci. 24:810- 812. Bulder, H. A. M., P. R. Van Hasselt, P. J. C. Kuiper, E. J. Speek, and A. P. M. Nijs. 1991. The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. J. Plant Physiol. 138:661- 666. Cataldo, D. A., M. Haroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci. Plant Anal. 6:71-80. Chaplin, M. H. and M. N. Westwood. 1980. Nutritional status of Barlett Pear on cydonia and Pyrus species rootstock. J. Amer. Soc. Hort. Sci. 105: 60- 63. Christopher D. A. and J. B. Loy. 1982. Influence of foliarly applied growth regulators on sex expression in watermelon. J. Amer. Soc. Hort. Sci. 107:401- 404. Caines, A. M. and C. Shennan. 1999. Growth and nutrient composition of Ca2+ use efficient and Ca2+ use inefficient genotypes of tomato. Plant Physiol. Biochem. 37:559-567. Clearwater, M. J., R. G. Lowe, B. J. Hofstee, C. Barclay, A. J. Mandemaker, and P. Blattmann. 2004. Hydraulic conductance and rootstcck effects in grafted vines of kiwifruit. J. Exp. Bot. 55:1371- 1382. Cohen, S. and A. Naor. 2002. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell Environ. 25: 17- 28. Deloire, A. and C. Hebant. 1982. Peroxidase activity and lignification at the interface between stock and scion of compatible and incompatible grafts of Capsicum on Lycopersicum. Ann. Bot. 49:887- 891. Den. N. and L. Smeets. 1987. Analysis of differences in growth of cucumber genotypes under low light conditions in relation to night temperature. Euphytica 36:19- 32. Edelstein, M., Y. Burger, C. Horev, A. Porat, A. Meir, and R. Cohen. 2004. Assessing the effect of genetic and anatomic variation of Cucurbita rootstocks on vigour, survival and yield of grafted melons. J. Hort. Sci. Biotec. 79:370- 374. Freidlander, M., D. Atsmon, and E. Galun. 1977. The effect of grafting on sex expression in cucumber. Plant Cell Physiol. 18:1343- 1350. Gad, B. O. and U. Kafkafi. 2002. Melon fruit quality as affected by timing, duration, and concentration of phosphate and nitrogen sources in recycled hydroponic system. J. Plant Nutrit. 25:1563- 1583. Gasco, A., A. Nardini, F. Raimondo, and E. Gortan. 2007. Hydraulic kinetics of the graft union in different Olea europaea L. scion/ rootstock combinations. Environmental and Experimental Botany. 60:245- 250. Gniazdowska, A. and A. M. Rychter. 2000. Nitrate uptake by bean (Phaseolus vulgaris L.) roots under phosphate deficiency. Plant Soil. 226:79- 85. Gur., A., D. Zamet, and E. Arad. 1978. A pear rootstock trial in Israel. Sci. Hort. 8:249- 264. Gutschick, V. P. 1993. Nutrition limited growth rates:roles of nutrient use efficiency and of adaptations to increase uptake rates. J. Exp. Bot. 44: 41- 52. Hain, R., H. J. Reif, E. Krause, R. Langebartels, H. Kinl, B. Vorman, W. Wiese, E. Schmelzer, P. Schreier, R. Strker, and K. Stenzel. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153- 156. Ikeda, H., S. Okitsu, and K. Arai. 1986. Comparison of magnesium deficiency of grafted and non- grafted cucumbers in water culture and soil culture and the effect of increased magnesium application on the prevention of magnesium deficiency disorder. Bull. Veg.& Ornam. Crop Res. Stn. Jap, Ser. C. 9:31- 41. Jawoski, E. G. 1971. Nitrate reductase assay in intact plant tissue. Biochem. Biopphyd. Res. Commu. 43:1274-1279. Kato, T. and H. Lou. 1989. Effect of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant. J. Jap. Soc. Hort. Sci. 58: 345- 352. Kyong, J. C., G. C. Chung, and S. J. Ahn. 1995. Effect of root zone temperature on the mineral composition of xylem sap and plasma membrane K+-Mg++-ATPase activity of grafted- cucumber and –figleaf gourd root system. Plant Cell Physiol. 34:639- 643. Kamboj, J. S., G. Browning, P. S. Blake, J. D. Quinlan, and D. A. Baker. 1999a. GC- MS- SIM analysis of abscisic acid and indole- 3- acetic acid in shoot bark of apple rootstocks. Plant Growth Reg. 28:21- 27. Kamboj, J. S., P. S. Blake, J. D. Quinlan, and D. A. Baker. 1999b. Identification and quantitation by GC- MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Reg. 28:199- 205. Leoni, S., R. Grudina, M. Cadinu, B. Madeddu, and M. G. Carletti. 1990. The influence of four rootstocks on some melon hybrids and a cultivar in greenhouse. Acta Hort. 287:127- 134. Lee, J. M. 1994. Cultivation of grafted vegetables:Ⅰ. Current satus, grafting methods and benefits. Hort. Sci. 29:235- 239. Liao, C. T. and C. H. Lin. 1995. Effect of flood stress on morphology and anaerobic metabolism of Momordica charantia. Environ. Exp. Bot. 35:105-113. Liao C. T. and C. H. Lin. 1996. Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environ. Exp. Bot. 36:167-172. Lowry, D. H., N. J. Rosebrough, A. L. Farr, and R. J. Randal. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265-275. Masuda, M. and K. Gomi. 1982. Diurnal changes of the exudation rate and the mineral concentration in xylem sap after decapitation of grafted and non-grafted cucumbers. J. Jap. Soc. Hort. Sci. 51:293-298. Masuda, M. 1989. Mineral concentration in xylem exudate of tomato and cucumber plants at midday and midnight. J. Jap. Soc. Hort. Sci. 58:619- 625. Mattsson, J., Z. Sung, and T. Berleth. 1999. Responses of plant vascular systems to auxin transport inhibition. Development 126: 2979– 2991. McWilliam, J. R., P. J. Kramer, and R. L. Musser. 1982. Temperature- induced water stress in chilling- sensitive plants. Aust. J. Plant Physiol. 9:343- 352. Mehmet, A. D. and A. T. Koseoglu. 2005. Effect of potassium on yield, fruit quality, and chemical composition of greenhouse- grown Galia melon. J. Plant Nutrit. 28:93- 100. Meloni, D. A., M. R. Gulotta, C. A. Martinez, and M. A. Oliva. 2004. The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopis alba. Braz. J. Plant Physiol. 16:39- 46. Moore, R., and D. B. Walker. 1981. Studies on vegetative compatibility- incompatibility in higher plants. A structural study of a compatible autograph in Sedum telephoides (Crassulaceae). Am. J. Bot. 68:820- 830. Morishita, M., Y. Sakata, and K. Sugiyama. 1999. Effect on rootstock on incidence of powdery mildew in cucumber. J. Jap. Soc. Hort. Sci. 68 (Suppl. 1):513 (In Japese). Mosse, B. and F. Scaramuzzi. 1956. Observations on the nature and development of structural defects in the unions between pear and quince. J. Hort. Sci. 31:47- 54. Oda, M., M. Nagata, K. Tsuji, and H. Sasaki. 1994. Factors affecting the survival of cucumber plants grafted on pumpkin plants by horizontal grafting at the hypocotyl level. Ornam Plants & Tea. Japan. A. 9:51- 60. Oda, M., M. Nagata, K. Tsuji, and H. Sasaki. 1996a. Effects of scarlet eggplant rootstock on growth, yield and sugar content of grafted tomato fruits. J. Jap. Soc. Hort. Sci. 65:531- 536. Oda, M., M. Nagata, K. Tsuji, and H. Sasaki. 1996b. Effects of scarlet eggplant rootstock on growth, yield and sugar content of grafted tomato fruits. J. Jap. Soc. Hort. Sci. 65:531- 536. Oda M., M. Maruyama, and G. Mori. 2005. Water transfer at graft union of tomato plants grafted onto Solanum rootstocks. J. Jap. Soc. Hort. Sci. 74:458- 463. Ogata, T. 1995. Expression and mechanism of graft incompatibility. Characteristics and application of rootstocks in fruit trees. Nobunkyo. Tokyo. Olday, F. C., A. V. Barker, and D. N. Maynard. 1976. A physiological basis for different patterns of nitrate accumulation in cucumber and pea. J. Amer. Soc. Hort. Sci. 101:219- 221. Olmstead, M. Y., N. S. Lang, and G. A. Lang. 2006. Examining the vascular pathway of sweet cherries grafted onto dwarfing rootstocks. Hort. Sci. 41:674-679. Otsuka, K. 1960. Studies on nutritional physiology of grafted plants. Ⅷ. Effects of nitrogen source on growth and on nitrogen metabolism of grafted plants, with special reference to molybdenum deficiency of tomato. J. Sci. Soil and Manure, Jap. 31:431- 434. Otsuka, K. 1968. Studies on nutritional physiology of grafted plants.Ⅱ. Influence of phosphorus and potassium and leaf composition for the same elements in the greenhouse tomato. J. Sci. Soil and Manure, Jap. 32:41- 45. Parry, M. S. and W. S. Rogers. 1972. Effects of interstock length and vigour on the field performance of Cox''s Orange Pippin apples. J. Amer. Soc. Hort. Sci. 47:97- 105. Pulgar, G., R. M. Rivero, D. A. Moreno, L. R. López-Lefebre, G. Víllora, M. Baghour, and L. Romero. 1998. Micronutrients en hojas de sandía injertadas. In: VII Simposio nacional-III Ibérico sobre Nutrición Mineral de las Plantas. Gárate A. (Ed.), Universidad Autónoma de Madrid, Madrid, p. 255-260. Rosen, H. 1957. A modified ninhydrin colorimetri analysis for amino acid. Arch. Biochem. Biophys. 67:10-15. Richards, D., W. K. Thompson, and R. P. Pharis. 1986. The influence of dwarfing interstocks on the distribution and metabolism of xylem- applied [3H]gibberellin A4 in apple. Plant Physiol. 82:1090- 1095. Rufty, T. W., D. W. Israel, R. J. Qiu, and T. Sa. 1993. Phosphate regulation of nitrate assimilation in soybean. J. Exp. Bot. 44:879- 891. Ruiz, J. M. and L. Romero. 1999. Nitrogen efficiency and metabolism in grafted melon plants. Scientia Hortic. 81:113- 123. Ruiz, J. M., A. Belakbir, and L. Romero. 1996. Foliar level of phosphorus and its bioindicators in cucumis melon grafted plants. A possible effect of rootstocks. J. Plant Physiol. 149:400- 404. Ruiz, J. M., A. Belakbir, I. L. Cantarero, and L. Romero. 1997. Leaf- macronutrient content and yield in grafted melon plant. A model to evaluate the influence of rootstock genotype. Scientia Hortic. 71:227- 234. Ruiz, J. M. and L. Romero. 2000. Nitrogen metabolism and yield response of cucumber (Cucumis sativus L cv Brunex) plants to phosphorus fertilization. J Sci Food Agric 80:2069- 2073. Rivero, R. M., J. M. Ruiz, and L. Romero. 2003. Role of grafting in horticultural plants under stress conditions. Food, Agriculture & Environment Vol.1 (1) : 70-74. Rivero, R. M., J. M. Ruiz, and L. Romero. 2004. Iron metabolism in tomato and watermelon plants:influence of grafting. J. Plant Nutrit. 27:2221- 2234. Sachs. T. 2000. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol 41: 649– 656. Sakata, Y., M. Sugiyama, T. Ohara, and M. Morishita. 2006. Influence of rootstocks on the resistance of grafted cucumber (Cucumis sativus L.) scions to powdery mildew (Podosphaera xanthii U. Braun & N. Shishkoff). J. Jap. Soc. Hort. Sci. 75:134- 140. Satoh, S., C. Iizuka, A. Kikuchi, N. Nakamura, and T. Fujii. 1992. Proteins and carbohydrates in xylem sap from squash root. Plant Cell Physiol. 33: 841- 847. Satoh, S. 2006. Organic substances in xylem sap delivered to above- ground organs by the roots. J. Plant Res. 119:179- 187. Shoji, T. 1991. Import of calcium by tomato fruit in relation to the day-night periodicity. Hort. Sci. 45:235- 243. Silva, H. N., A. J. Hall, D. S. Tustin, and P. W. Gandar. 1999. Analysis of distribution of root length density of apple trees on different dwarfing rootstocks. Ann. Bot. 83:335- 345. Simkhada, E. P., Y. Sekozawa, S. Sugaya, and H. Gemma. 2007. Translocation and distribution of 13C- photosynthates in ‘Fuyu’ persimmon (Diospyros kaki) grafted onto different rootstocks. J. Food Agri. & Environ. 5 (1) : 184-189. Simons, P. K. 1986. Graft-union characteristics as related to dwarfing in apple. Acta Hort. 160:57- 66. Soumelidou, K., N. H. Battey, P. John, and J. R. Barnett. 1994. The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann. Bot. 74:605- 611. Stigter, H. C. M. 1971. Some aspects of the physiological functioning of the graft muskmelon/ Cucurbita ficifolia. Pflanzenphysiologie, Bd. 65: 223-231. Tachibana, S. 1988. The influence of root temperature on nitrate assimilation by cucumber cultivars and figleaf gourd. J. Jap. Soc. Hort. Sci. 57:440- 447. Tachibana, S. 1991. Import of calcium by tomato fruit in relation to the day-night periodicity. Sci. Hort. 45:235- 243. Tagliavani, M., D. Scudellari, B. Marangoni, F. F. Bastianel, and M. Zamborlini. 1992. Leaf mineral composition of apple tree:sampling date and effects of cultivar and rootstock. J. Plant Nutrit. 15:605- 619. Teitel, D. C., M. S. Arad, E. Birnbaum, and Y. Mizrahi. 1986. Nitrate reductase activity in tomato fruits grown in vitro and in vivo. Plant Growth Reg. 4:357- 362. Traka-Mavrona, E., K. M. Sotiriou, and T. Pritsa. 2000. Response of squash as rootstock for melon. Sci. Hort. 83:353- 362. Wang, S., L. Tang, and F. Chen. 2001. In vitro flowering of bitter melon. Plant Cell Rep. 20:393- 397. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. Wiersum, L. K. 1979. Effects of environment and cultural practices on calcium nutrition. Soil Science and Plant Analysis. 10:259- 278. Yamasaki, A., M. Yamashita, and S. Furuya. 1994. Mineral concentrations and cytokinin activity in the xylem exudate of grafted watermelons as affected by rootstocks and crop load. J. Jap. Soc. Hort. Sci. 62:817- 826. Yamazaki, H., S. Kikuchi, and T. Hoshina. 2000. Calcium uptake and resistance to bacterial wilt of mutually grafted tomato seedlings. Soil Sci. Plant Nutri. 46:529- 534. Yamasaki, A. 2003. Root- pressure driven xylem sap flow in greenhouse melon (Cucumis melon L.):diurnal change and the effects of shading, growth stage, rootstock and fruit number. Plant and Soil 255:409- 412. Yu, J. Q., S. Y. Shou, Y. R. Qian, Z. J. Zhu, and W. H. Hu. 2000. Autotoxic potential of cucurbit crops. Plant and Soil. 223:147- 151. Zekri. M. and L. R. Parson. 1992. Salinity tolerance of citrus rootstock: effects of salt on root and leaf mineral concentrations. Plant and Soil 147:171- 181. Zijlstra. S., S. P. C. Groot, and J. Jansen. 1994. Genotypic variation of rootstocks for growth and production in cucumber:possibilities for improving the root system by plant breeding. Hort. Sci. 56:185- 196.
摘要: 
碧華¢與¢粉青¢苦瓜分別嫁接絲瓜或南瓜,調查嫁接植株於嫁接初期、後期的維管束連結與植株生長情形。植株於塑膠遮雨棚下生長六週與九週時,調查木質液量、葉片水份生理、營養元素含量及氮代謝生合成產物。
利用石蠟切片、葉片水份潛勢與氣孔導度比較苦瓜嫁接苗初期維管束癒合情形,顯示¢碧華¢與¢粉青¢苦瓜嫁接絲瓜砧的癒合速度較南瓜砧快。由嫁接苗維管束染色結果得知,南瓜砧木下胚軸的維管束與接穗相連結的數目少於絲瓜砧木。嫁接後期觀察植株吸收0.1﹪Safranin O染液的結果顯示,砧木與接穗的維管束完全相連,唯嫁接絲瓜砧植株嫁接部位縱切面的維管束較南瓜砧植株彎曲嚴重。嫁接絲瓜砧者於塑膠棚生長六週時木質液流量最多,九週後嫁接絲瓜砧者的木質液流量與未嫁接者無顯著差異, 以南瓜砧者的木質液流量顯著最低。
苦瓜嫁接17天後定植於溫室,嫁接植株於第一及第二週時,地上部的營養生長較未嫁接者差,第五週時嫁接與未嫁接者的地上部生長勢無顯著差異,地下部鮮乾重以嫁接南瓜砧者最低。苦瓜嫁接苗生長六週時,嫁接植株之總蔓長小於未嫁接者,¢粉青¢苦瓜嫁接二砧木者的地上部乾重小於未嫁接者。苦瓜嫁接與未嫁接者於嫁接後期的葉片水份生理、地上部鮮乾重與總蔓長無顯著差異。
¢碧華¢苦瓜的全株總雌、雄花數與雌花/雄花比例受南瓜砧的影響與未嫁接者有顯著差異,但雌、雄花始花日數與始花節位不受到嫁接砧木所影響。¢粉青¢苦瓜的花性表現不受到嫁接砧木所影響,嫁接二砧木者之第二子蔓的雌、雄花始花日數延長,第一子蔓的雄花始花節位降低。
嫁接絲瓜砧之木質液及葉片中的硝酸態氮與磷含量最低,葉片中硝酸還原酶活性最低,總游離胺基酸和可溶性蛋白質濃度較高,果實中總游離胺基酸濃度也較多。¢碧華¢苦瓜嫁接南瓜砧與未嫁接者每單位根鮮重的硝酸還原酶活性高於嫁接絲瓜砧者,絲瓜砧之根部鮮乾重最高,其根部合成並輸往木質液中的總游離胺基酸含量顯著最多。
苦瓜嫁接南瓜砧者葉片中磷、鉀濃度顯著較高,鎂濃度則為顯著最低。植株木質液中的磷、鉀總量與葉片中磷、鉀濃度有顯著負相關,鎂元素則相反。二品種苦瓜嫁接絲瓜砧者之葉片與木質液中的鈣含量為最高,嫁接二砧木者葉片中的鐵濃度較未嫁接者為低。

The study examines the vegetative growth of grafted and ungrafted plants under various factors using the ''Luxuriance'' and ''Fen Ching'' bitter melons as samples. ''Luxuriance'' and ''Fen Ching'' bitter melons were grafted onto a luffa or squash through cleft grafting. The vascular connection and vegetative growth at early or late stages were analyzed. The root exudation content, leaf water potential, nutrient elements content, nitrogenous components and nitrate reductase activity of the leaf were analyzed after being grown for six to nine weeks under the rain shelter.
The section of the grafted union area, leaf water potential, and stomata conductance of the grafted plants were studied to understand the vascular bundle-connected condition. The adhesion of the vascular bundle grafted unto the luffa is faster than the squash stocks. The number of the vascular bundles of squash at the hypocotyl contacted to scion was less than that of luffa. All xylem vessels between the bitter melon scion and squash or luffa stocks were completely connected by observing through the safranin O solution in the vascular bundles.
The longitudinal sections of the xylem vessels of the grafted union area of luffa rootstocks, however, were twisted compared to that of squash, which was relatively straight. The different degree of twisting condition of the xylem vessels of grafted union between squash and luffa rootstocks did not affect the root exudation content. The root exudation from the luffa rootstock showed great content after growing under rain shelter for six weeks but it did not significantly differ from the ungrafted plants growing for nine weeks. The root exudation from squash stocks was the lowest after being planted in the rain shelter for nine weeks.
The shoot growth after grafting for 17-days was slow during one to two weeks observation period under the green house. The shoot growth was not significantly different between grafted and un-grafted plants after growing under the green house for five weeks. The fresh and dry weight of root into squash stocks were the lowest after growing under the green house for five weeks. After growing for six weeks, the total stem length of the grafted bitter melon was less than that of the un-grafted bitter melon. The shoot dry weight of grafted ''Fen Ching'' bitter melons was significantly less than the un-grafted bitter melon. The water potential of the leaf, the shoot weight and the shoot length were not significantly different between the grafted and un-grafted bitter melon at late stage of development.
The influence of male and female flower number and the ratio of female to male flowers of ''Luxuriance'' bitter melon grafted onto squash were significantly different. The flowering date in the second shoot of ''Fen Ching'' bitter melon was delayed. The male flowers in the first shoot, however, appeared early.
The nitrogen and phosphorus content in the xylem sap, the nitrogen concentration and nitrate reductase activity in the leaf of bitter melon grafted unto the luffa was lower than those grafted unto the squash. The concentration of free amino acid and soluble protein in the leaf of grafted bitter melon unto luffa was increased. It can be noted that this fruit had great amount of free amino acid. The nitrate reductase activity in the root of ''Luxuriance'' bitter melon grafted unto the squash was higher than the luffa but the dry and fresh weight in the root had the reverse results.
The leaf of grafted bitter melon unto the squash had high levels of phosphorus and potassium concentrations and low level of magnesium concentration. The content of phosphorus and potassium between the leaf concentration and the root exudation were negatively correlated but magnesium was positively correlated. The calcium content in the leaf and root exudation of grafted bitter melon unto luffa was great. The iron concentration in the grafted bitter melon leaf was lower than in the un-grafted melon.
URI: http://hdl.handle.net/11455/28879
其他識別: U0005-2301200811065100
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.