Please use this identifier to cite or link to this item:
標題: 熱傳增強管之熱傳性能比較
Comparison of Heat Transfer Characteristics for Heat Transfer Enhancing Tubes
作者: 沈其
Shen, Chi
關鍵字: 熱傳增強;heat transfer enhancement;突出環節;螺紋線;鰭片模組;彈簧線;紐塞數;摩擦因子;ring-type protrusion;s micro-carved helical fin;fin module insert;wire coil;Nusselt number;friction factor
出版社: 機械工程學系所
引用: B. W. Webb and S. Ramadhyani, “Conjugate Heat Transfer in a Channel with Staggered Ribs”, Int. J. Heat Mass Transfer, Vo1. 28, pp. 1679-1687, 1985. [2] S. Wang, Z. Y. Guo and Z. X. Li, “Heat Transfer Enhancement by Using Metallic Filament Insert in Channel Flow”, Int. J. Heat Mass Transfer, Vo1. 44, pp. 1373-1378, 2001. [3] S. B. Uttarwar and M. R. Rao, “Augmentation of Laminar Flow Heat Transfer in Tubes by Means of Wire Coil Inserts”, J. Heat Transfer, Vo1. 107, pp. 930-935, 1985. [4] J. H. Royal and A. E. Bergles, “Augmentation of Horizontal In-Tube Condensation by Means of Twisted-Tape Inserts and Internally Finned Tubes”, J. Heat Transfer , Vo1. 100, pp. 17-24, 1978. [5] J.L. Fernandez and R. Poulter, “Heat Transfer Enhancement by Means of Flag-type Insert in Tubes”, Int. J. Heat Mass Transfer, Vo1. 30, pp. 2603-2609, 1987. [6] G. H. Junkhan, A. E. Bergles , V. Nirmalan and T. Ravigururajan, “Investigation of Turbulators for Fire Tube Boilers”, J. Heat Transfer , Vo1. 107, pp. 354-360, 1985. [7] D. L. Gee, and R. L. Webb, “Forced Convection Heat Transfer in Helically Rib-Roughened Tubes”, Int. J. Heat Mass Transfer, Vo1. 23, pp. 1127-1136, 1980. [8] E. M. Sparrow, K. K. Koram and M. Charmchi, “Heat Transfer and Pressure Drop Characteristics Induced by a Slat Blockage in a Circular Tube”, J. Heat Transfer, Vo1. 102, pp. 64-70, 1980. [9] R. L. Webb, E. R. Eckert, and R. J. Goldstein “Heat Transfer and Friction in Tubes with Repeated-Rib Roughness ”, Int. J. Heat Mass Transfer, Vo1. 14, pp. 601-617, 1971. [10] R. Sethumadhavan, and M.R. Rao, “Turbulent Flow Heat Transfer and Fluid Friction in Helical-Wire-Coil-Inserted Tubes”, Int. J. Heat Mass Transfer, Vo1. 26, pp. 1833-1845, 1983. [11] W. Molki and K.L. Bhamidipati, “Enhancement of Convective Heat Transfer in the Developing Region of Circular Tubes Using Corona Wind”, Int. J.Heat Mass Transfer, Vo1. 47, pp. 4301-4314, 2004. [12] D.W . Zhou., “Heat Transfer Enhancement of Copper Nanofluid with Acoustic Cavitation”, Int. J. Heat Mass Transfer, Vo1. 47, pp. 3109-3117, 2004. [13] W.Y.C.C. Wang, Y. Z. Robert and L.W. Huang, “Film Condensation of HCFC-22 on Horizontal Tubes”, Int. Comm. Heat Mass Transfer, Vo1. 23, pp. 79-90, 1996. [14] V. Zimparov, “Enhancement of Heat Transfer by a Combination of a Single-Start Spirally Corrugated Tubes with a Twisted Tape”, Exp. Thermal Fluid Sci, Vo1.25, pp. 535-546, 2002. [15] S.Y. Won and P.M. Ligrani, “Comparisons of Flow Structure and Local Numbers Numbers in Channels with Parallel-and Crossed-Rib Tabulators”, Exp. Thermal Fluid Sci, Vo1. 47, pp. 1573-1586, 2004. [16] S. Nozu, H. Honda and S. Nishida, “Condensation of a Zeotropic CFC114 - CFC113 Refrigerant Mixture in the Annulus Double-Tube Coil with an Enhanced Inner Tube”, Exp. Thermal Fluid Sci., Vo1.11, pp. 364-371, 1995. [17] M. Goto, N. Inoue and N.Ishiwatari, “Condensation and Evaporation Heat Transfer of R410A inside Internally Grooved Horizontal Tubes”, Int. J. Heat Mass Transfer, Vo1. 24, pp. 628-638, 2001. [18] 黃文傑, “圓管突出環節對空氣熱傳增強的影響”, 國立中興大學機械工程研究所碩士論文, 2004。 [19] 王培堂, “圓管內部連續突出環節對水流與管壁間之熱傳增強的影響”,國立中興大學機械工程研究所碩士論文,2005。 [20] 陳俊忠, “圓管內部突出環節之圓弧尺寸大小對熱傳增強之影響”, 國立中興大學機械工程研究所碩士論文,2006。 [21] S. Rainieri, F. Bozzoil, G. Pagliarini, “Experimental Investigation on the Convective Heat Transfer in Straight and Coiled Corrugated Tubes for Highly Viscous : Preliminary Results”, Int. J. Heat Mass Transfer, Vo1. 55, pp. 498-504, 2012. [22] H. Bas, V. Ozceyhan, “Heat Transfer Enhancement in a Tube with Twisted Tape Inserts Placed Separately from the tube Wall”, Exp. Thermal Fluid Sci., Vo1.41, pp. 51-58, 2012. [23] A. Garcia, J.P. Solano, P.G. Vicente and A. Viedma, “The Influence of Artificial Roughness Shape on Heat Transfer Enhancement: Corrugated Tubes, Dimpled Tubes and Wire Coils”, Applied Thermal Engineering, Vo1.35, pp. 196-201, 2012. [24] X.H Tan, D.S. Zhu, G.Y Zhou and L.D Zeng, “Experimental and Numerical Study of Convective Heat Transfer and Fluid Flowin Twisted Oval Tubes”, Int. J. Heat Mass Transfer, Vo1. 55, pp. 4701-4710, 2012. [25] P. Promvonge, S. Pethkool, M. Pimsarn and C. Thianpong, “Heat transfer augmentation in a helical-ribbed tube with double twisted tape inserts”, Int. C. Heat Mass Transfer, ” Vo1. 39, pp. 953-959, 2012. [26] S. Rainieri, F. Bozzoli, L. Cattani and G. Pagliarini, “Compound Convective Heat Transfer Enhancement in Helically Coiled Wall Corrugated Tubes”, Int. J. Heat Mass Transfer, Vo1. 59, pp. 353-362, 2013. [27] P. Naphon and T. Suchana, “Heat Transfer Enhancement and Pressure Drop of the Horizontal Concentric Tube with Twisted Wires Brush Inserts”, Int. Comm. Heat Mass Transfer, Vo1. 38, pp. 236-241, 2011. [28] K.M. Kim, B.S. Kim, D.H, Lee, H. Moon and H.H. Cho, “Optimal Design of Transverse Ribs in Tubes for Thermal Performance Enhancement”, Energy,Vo1. 35, pp. 2400-2406, 2010. [29] S.J. Kline and F.A. McClintock, “Describing Uncertainties in Single-Sample Experiments”, Mechanical Engineering, Vol. 75, pp. 3-8, 1953.
實驗探討銅管內部突出環節、細微刻螺紋線(micro-carved helical fin)、螺旋鰭片模組 (fin module insert)、和彈簧線 (wire coil)等裝置的熱傳增強效應,管內的流體為空氣。實驗中使用十七支測試管,其中內部具突出環節管有十三支,節徑比值(p/d)分為0.29、0.51、0.76、1.45、2.9、4.35、5.07、5.8等八種,環節深度比值(e/d)分為0.025、0.043、0.069等三種;另三種具特殊裝置之銅管則各有一支;量測之結果皆與一支內部平滑圓管進行比較,量測的雷諾數範圍為3610到16523,此研究並探討紐塞數(Nu)及摩擦因子(f)之相關性。熱傳量測結果顯示,對內部具突出環節管而言,Nu值隨Re值之增加而增加,若要得到較高之Nu值,須採用較小的p/d值,與較大的e/d值;另三支熱傳增強管的比較顯示,在高流量時,內部加有鰭片模組的Nu值較高;在低流量時,內部加有彈簧線圈之Nu值較高;而內部具有螺紋線的Nu值最低。壓差量測之結果顯示,對內部具突出環節管而言,隨p/d值的增加,f值會隨之減少,而隨e/d值之增加,f值會隨之增加。比較結果顯示,紋線的f值最小,而內部具有彈簧線圈之f值最大。

This experiment investigated the effect of ring-type protrusions, micro-carved helical fin, fin module insert, and wire coil on the heat transfer enhancement in a circular tube, The flow in the tube was air. There are 13 test tubes with ring-type protrusions. The p/d values of thses tubes is in the range of 0.25-5.8 ,while the e/d value is in the range of 0.025- 0.069. For the other three different heat transfer enhancing devices, each has one test tube. All the obtained heat transfer data were compared to those of a smooth tube. The Reynolds number ranges from 3610 to 16523. The Nu and f individually were expressed as functions of Re, p/d and e/d through a correlation analysis. For the tube with ring-type protrusions, the Nu increases with the Re. For achieving a high Nu value, the tube needs to have a small of p/d valve and a large e/d valve. A comparison of the other three heat transfer enhancing tubes shows that, at high Re values, the Nu value of the tube with fin module insert is higher than that of the tube with wire coil; at low Re values, the Nu value of the tube with wire coil is larger than that of the tube with fin module insert. At any Re value, the Nu value of the tube with micro-carved helical fin is the lowest. The pressure drop measurement shows that, for the tube with ring-type protrusions, the f value decreases with an increase of the p/d and it increases with the e/d. The ressult also shows that, the f vale for the tube with helical fins is the smallest, while the tube with wire coil is the largest.
其他識別: U0005-0508201320340700
Appears in Collections:機械工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.