Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/28994
標題: 套袋對‘珍珠拔’番石榴果實發育期間生理特性及果膠酵素活性之影響
Bagging Affects Fruits Size, Physiological Characterisrics and Pectic Enzymes Activity during Growth and Development in 'Jen-Ju Bar' Guava (Psidum guajava L.cv. Jen-Ju Bar) Fruits
作者: 王歆婷
Wang, Hsin-Ting
關鍵字: bagging;套袋;Jen-Ju Bar;guava;pectic enzymes;珍珠拔;番石榴;果膠酵素
出版社: 園藝學系所
引用: 丁建卿。2006。最親切的台灣水果—番石榴。鄉間小路 32:3-11。 王茗慧。2006。‘帝王’番石榴無機養分週年變化果實後熟生理及貯藏研究。國立中興大學園藝學研究所碩士論文 99pp.。台中。 李雪如、謝慶昌、林慧玲、李國權。2000。金煌芒果果實生育期巨量元素及果肉劣變調查。行政院農業委員會高雄區農業改良場研究彙報12:12-24。 林芳存、郭銀港、呂民雄。1992。套袋對番石榴果實大小與品質影響。嘉義農專學報 29:37-45。 林慧玲、黃瑞華、王自存。2005。番石榴果實之貯運技術。園產品採後處理技術之研究與應用研討會專刊 pp.21~41。 林慧玲。1998。番石榴果實後熟生理之研究。國立台灣大學園藝學研究所博士論文 255pp.。台北。 邱祝櫻。1997。疏果及套袋對印度棗產量及品質之影響。高雄區農業改良場研究彙報 9:34-43。 侯清利。1998。果實品質有關代謝與影響因素及其改良措施(上)。農業世界雜誌 183:71-76。 洪紫馨。1996。番石榴果實的後熟生理及細胞壁水解酶在後熟期間的變化。國立台灣大學園藝學研究所碩士論文 75pp.。台北。 高景輝。1985。Auxins。植物荷爾蒙。華香園。pp.29-31。 張哲嘉、林宗賢。1998。台灣番石榴生產之現況與改進。中國園藝 44:116-124。 郭婉秋。2006。‘珍珠拔’及‘水晶拔’番石榴果實採收後生理之研究。國立屏東科技大學農園生產系碩士學位論文125pp.。屏東。 郭銀港。2001。葡萄果實軟化生理之研究。國立中興大學園藝學研究所博士論文 174pp.。台中。 黃子彬、楊耀祥、李金龍。1984。套袋對巨峰葡萄果實品質之影響。台灣農業 20:29-33。 黃阿賢。1993。套袋對文旦果實生長、品質與袋內溫度的影響。中國園藝 39:198-208。 楊建榮。2004。套袋處理對‘水晶’番石榴果實生育及品質之影響。國立中興大學園藝學研究所碩士論文 129pp.。台中。 楊雅薰。1991。番石榴葉片及果實無機養分和碳水化合物濃度之調查。國立中興大學園藝學研究所碩士論文 88pp.。台中。 熊同銓。1997。套袋對於楊桃果實品質之影響。提升果樹產業競爭力研討會專集Ⅲ pp.111-115。 歐錫坤、宋家瑋、黃肇家、劉名穗。2006。桃不同類型果實後熟時的果肉硬度與乙烯變化。台灣園藝 52:131-138。 蔣世超、柯定芳、張春梅、陳美珍。2004。牛皮紙套袋與聚乙烯套袋對香蕉果房發育和後熟品質之影響比較。中國園藝 50:245-252。 鄭安亨。2005。‘珍珠拔’番石榴生育期間葉片、果實礦物元素及光合產物之變化與果實品質間之關係。國立中興大學園藝學研究所碩士論文 97pp.。台中。 顏秀芬。1986。番石榴果實呼吸型式及控制大氣組成貯藏延長其櫃架壽命之研究。國立台灣大學園藝學研究所碩士論文 70pp.。台北。 Abu-Goukh, A. A. and H. A. Bashir. 2003. Changes in pectic enzymes and cellulase activity guava fruit ripening. Food Chem. 83:213-218. Abu-Sarra, A. F. and A. A. Abu-Goukh. 1992. Changes in the pectinesterase, poly-galacturonase and cellulase activity during mango fruit ripening. J. Hort. Sci. 67(4):561–568. Abu-Sarra, A. F., and A. A. Abu-Goukh. 1992. Changes in pectinesterase, polygalacturonase and cellulase activity during mango ripening. J. Hort. Sci. 67:561-568. Ali, Z. M., L. H. Chin, and H. Lazan. 2004. A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits. Plant Science 167:317-327. Amarante, C., N. H. Banks, and S. Max. 2002. Effect of preharvest bagging on fruit quality and postharvest physiology of pears (Pyrus communis). N. Z. J. Crop Hort. Sci. 30:99-107. Andreotti, C., D. Ravaglia, A. Ragaini, and G. Costa. 2008. Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Ann. Appl. Biol. 1-13. (in printing) Andrews, J., M. Malone, D. S. Thompson, L. C. Ho, and K. S. Burton. 2000. Peroxidase isozyme patterns in the skin of maturing tomato fruit. Plant Cell Environ. 23:415-422. Andrews, J., S. R. Burton ,and C. E. Evered. 2002. Subcellular localization of peroxidase in tomato fruit skin and the possible implications for the regulation of fruit growth. J. Exp. Bot. 53:2185-2191. Awad, M. A. 2007. Increasing the rate of ripening of date palm fruit (Phoenix dactylifera L.) cv. Helali by preharvest and postharvest treatments. Postharvest Biol. Technol. 43:121-127. Awad, M. and M. R. Young. 1980. Avocado pectinmethylesterase activity in relation to temperature, ethylene and ripening. J. Amer. Soc. Hort. Sci. 105:638-641. Azzolini, M., A. P. Jacomino, H. U. Bron, R. A. Kluge, and M. A. Schiavinato. 2005. Ripening of ‘Pedro Sato’ guava : study on its climacteric or non-climacteric nature. Braz. J. Plant Physiol. 17:299-306. Barden, C. L. and W. J. Bramlage. 1994. Accumulation of antioxidants in apple peel as related to preharvest factors and superficial scald susceptibility of the fruit. J. Amer. Soc. Hort. Sci. 119:264-269. Bartley, I. M., M. Knee, and M. A. Casimir. 1982. Fruit softeningⅠ. Changes in cell wall composition and endo-polygalacturonase in ripening pears. J. Exp. Bot. 33:1248-1255. Bashir, H. A. and A. A. Abu-Goukh. 2003. Compositional changes during guava fruit ripening. Food Chem. 80:557-563. Biles, C. L., B. D. Bruton, J. X. Zhang ,and V. Russo. 2000. Characterization of muskmelon fruit peroxidases at different developmental stages. Biol. Plant. 43:373-379. Buagante Jr, R. D., M. C. C. Lizada, and M. B. Ramos. 1996. Disease control in philippine ‘Carabao’ mango with preharvest bagging and postharvest hot water treatment. Acta Hort. 455:797-804. Burda, S., W. Oleszek, and C. Y. Lee. 1990. Phenolic compounds and their change in apples during maturation and cold storage. J. Agric. Food Chem. 38:945-948. Cheng, G. W, and P. J. Breen. 1991. Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. J. Amer. Soc. Hort. Sci. 116:865-869. Ding, C. K., K. Chachin, Y. Ueda, Y. Imahori, and C. Y. Wang. 2001. Metabolism of phenolic compounds during loquat fruit development. J. Agric. Food Chem. 49:2883-2888. Djakovic, T. and Z. Jovanovic. 2003. The role of cell wall peroxidase in the inhibition of leaf and fruit growth. Bulg. J. Plant Physiol. Special issue 264-272. Doshi, P., P. Adsule, and K. Banerjee. 2006. Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. J. Food Sci. Technol. 41:1-9. Dubois, M. 1956. Claorimetetic method for determination of sugar and related substances. Anal. Chen. 28:350-356. El-Bulk, R. E., E. F. E. Babiker, A. H. E. Tinay. 1997. Changes in chemical composition of guava fruits during development and ripening. Food Chem. 59:395-399. El-Buluk, R. E., E. E. Babiker, and A. H. E. Tinay. 1995. Biochemical and physical changes in fruits of four guava cultivars during growth and development. Food Chem. 54:279-282. El-Zoghbi, M. 1994. Biochemical changes in some tropical fruits during ripening. Food Chem. 49:33-37. Fallahi, E., W. M. Colt, C. R. Baird, B. Fallahi, and I. J. Chun. 2001. Influence of nitrogen and bagging on fruit quality and mineral concentrations of ‘BC-2 Fuji’ apple. HortTechnol. 11(3):462-466. Fan, X. and J. P. Mattheis. 1998. Bagging ‘Fuji’ apples during fruit development affects color development and storage quality. HortScience 33:1235-1238. Faoro, I. D. and M. Mondardo. 2004. Bagging of Nashi pear cv. ‘Housui’. Rev. Bras. Frutic. 26:86-88. Flurkey, W. H. and J. J. Jen. 2005. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 168:65-72. Frenkel, C. 1972. Involvement of peroxidase and indole-3-acetic acid oxidase isozymes from pear, tomato and blueberry fruit in ripening. Plant Physiol. 49:757-763. Gross, J. and I. Ohad. 1983. In vivo fluorescence spectroscopy of chlorophyll in various unripn and ripe fruit. Photochem. Photobiol. 37:195-200. Hagerman, A. E. and P. J. Austin. 1986. Continuous spectrophotometric assay for plant pectin methyl esterase. J. Agric. Food Chem. 34:440-444. Hayama, H., M. Tatsuki, A. Ito, and Y. Kashimura. 2006. Ethylene and fruit softening in the stony hard mutation in peach. Postharvest Biol. Technol. 41:16-21. Hiwasa, K., Y. Kinugasa, S. Amano, A. Hashimoto, R. Nakano, A. Inaba, and Y. Kubo. 2003. Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J. Exp. Bot. 54:771-779. Hofman, P. J., D. R. Beasley, and D. C. Joyce. 1999. Effect of preharvest bagging and of embryo abortion on calcium levels in ‘Kensington Pride’ mango fruit. Aust. Exper. Agri. 39:345-349. Hofman, P.J., L. G. Smith, D. C. Joyce, G. I. Johnson, and G. F. Meiburg. 1997. Bagging of mango (Mangifera indica cv. ‘Keitt’) fruit influences fruit quality and mineral composition. Postharvest Biol. Technol. 12:83-91. Honda, S., Y. Hishimura, M. Takahashi, H. Chida, and K. Kakeji. 1982. A manual method for the spectrophotomertic determination of reduction carbohydrates with 2-cyanoacetamide. Anal. Biochem. 119:194-199. Hu, G., D. Chen, P. Li, W. Wang, and J. Dong. 2001. Effect of bagging on fruit coloration and phenylalanine ammonia lyase and polyphenol oxidase in ’Feizixiao’ litchi. Acta Hort. 588:273-278. Huber, D. J. 1983. The role of cell wall hydrolases in fruit softening. Hort. Rev. 5:169-219. Hyodo, H. and S. Asahara. 1973. Changes in phenylalanine ammonia-lyase activity in Satsuma mandarin fruit during ontogeny. Plant Cell Physiol. 14:823-828. Iannetta, P. P. M., J. Berg, R. E. Wheatly, R. J. McNicol, and H. V. Davies. 1999. The role of ethylene and cell wall modifying enzymes in raspberry (Rubus idaeus) fruit ripening. Physiol. Plant. 105:338-347. Inari, T., R. Yamauchi, K. Kato, and T. Takeuchi. 2002. Changes in pectic polysaccharides during the ripening of cherry tomato fruits. Food Sci. Technol. Res. 8:55-58. Ingham, L. M., M. L. Parker, and K. W. Waldron. 1998. Peroxidase: changes in soluble and bound froms during maturation and ripening of apples. Physiol. Plant. 102:93-100. Jain, N., K. Dhawan, S. Malhotra, and R. Singh. 2003. Biochemistry of fruit ripening of guava (Psidium guajava L.): compositional and enzymatic changes. Plant Foods for Human Nutri. 58:309-315. Jain, N., K. Dhawan, S. P. Malhora, S. Siddiqui, and R. Singh. 2001. Compositional and enzymatic changes in guava (Psidium guajava L.) fruits during ripening. Acta Physiol. Plant. 23:357-362. Jia, H. J., A. Araki, and G. Okamoto. 2005. Influence of fruit bagging on aroma volatiles and skin coloration of ‘Hakuho’ peach (Prunus persica Batsch). Postharvest Biol. Technol. 35:61-68. Johns, G. G. and K. J. Scott. 1989. Delayed harvesting of bananas with ‘sealed’ cover in bunches: Effect on fruit yield and quality. Aust. J. Exp. Agric. 29:727-733. Johnson, L. B. and B. A. Cunningham. 1972. Peroxidase activity in healthy and leaf-rust-infected wheat leaves. Phytochemistry 1:547-551. Ju, Z., Y. Yuan, C. Lin, S. Zhan, and M. Wang. 1996. Relationships among simple phenol, flavonoid and anthocyanin in apple fruit peel at harvest and scald susceptibility. Postharvest Biol. Technol. 8:83-93. Jullien, A., N. G. Munier-Jolain, E. Malézieux, M. Chillent, and B. Ney. 2001. Effect of pulp cell number and assimilate availability on dry matter accumulation rate in a banana fruit [Musa sp. AAA group ‘Grande Naine’ (Cavendish subgroup)]. Ann. of Bot. 88:321-330. Katagiri, T., Y. Satoh, T. Fukuda, and I. Kataoka. 2003. Improving marketability of ‘Fuyu’ persimmon fruit by bagging culture. Acta Hort. 601:213-217. Keith, R. W., D. L. Tourneau, and D. Mahlum. 1958. Quantitative paper-chromatograph determination of phenols. J. Chromatography 1:534-536. Kintner, P. K. and J. P. Van Buren. 1982.Carbohydrate interference and its correction in pectin analysis using the m-Hydroxydiphenyl method. J. Food Sci. 47:756-760. Lee, C. Y., V. Kagan, A. W. Jaworski, and S. K. Brown. 1990. Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars. J. Agric. Food Chem. 38:99-101. Lelièvre, J. M., A. Latché, B. Jones, M. Bouzayen, and J. C. Pech. 1997. Ethylene and ripening. Physiol. Plant. 101:727-739. Li, S. H., M. Génard, J. G. Bussi, J.G. Huguet, R. Habib, J.Besset ,and R. Laurent. 2001. Fruit quality and leaf photosynthesis in response to microenvironment modification around individual fruit by covering the fruit with plastic in nectarine and peach trees. J. Hort. Sci. Bio. 76:61-69. Lister, C. E. and J. E. Lancaster. 1996. Development changes in enzymes of flavonoid biosynthesis in skins of red and green apple cultivars. J. Sci. Food Agric. 71:313-320. Liu X. S. Shiomi, A. Nakatsuka, Y. Kubo, R. Nakamura, and A. Inaba. 1999. Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiol. 121:1257-1265. Lizada, M. C., and S. F. Yang. 1979. A simple and sensitive assay for 1-aminochclopropane-1-carboxylic acid. Anal. Biochem. 100:140-145. Mattiuz, B. H., L. G. Neto, and P. L. Filho. 1997. Fruit development of three guava cultivars (Psidium guajava L.) .Acta Hort. 452:83-86. Mercado-Silva, E., P. Benito-Bautista, and M. A. Garcia-Velasco. 1998. Fruit development, harvest index and ripening changes of guavas produced in central Mexico. Postharvest Biol. Technol. 13:143-150. Mir, N., M. Wendorf, R. Perez, and R. M. Beaudry. 1998. Chlorophyll fluorescence as affected by some superficial defects in stored apple. J. Hort. Sci. Biotechnol. 73:846-850. Mita, S., C. Kirita, M. Kato, and H. Hyodo. 1999. Expression of ACC synthase is enhanced earlier than that of ACC oxidase during fruit ripening of mume (Ptunus mume). Physiol. Plant. 107:319-328. Mondal, K., A. P. Singh, N. Saxena, K. Dhawan, and R. Singh. 2008. Possible interactions of polyamines and ethylene during ripening of guava (Psidium guajava L.) fruits. J. Food Biochem. 33:46-59. Moya-leon, M. A. and P. John. 1994. Activity of 1-amioncyclopropane-1carboxylate (ACC) oxidase in the pulp and peel ripening banana. J. Hort. Sci. 69:243-250. Nagel, C. W. and M. E. Patterson. 1967. Pectic enzymes and development of pear (Pyrus communis). J. Food Sci. 32:294-297. Nishiyama, K., M. Guis, J. K. C. Rose, Y. Kubo, K. A. Bennett, L. Wangjin, K. Kato, K. Ushijima, R. Nakano, A. Inaba, M. Bouzayen, A. Latche, J. C. Pech, and A. B. Bennett. 2007. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J. Exp. Bot. 58:1281-1290. Perkins-Veazie P. M., D. J. Huber, and J. K. Brecht. 1995. Characterization of ethylene production in developing strawberry fruit. Plant Growth Regul. 17:33-39. Prasanna, V., H. Yashoda, T. Prabha, and R. Tharanathan.2003. Pecic polysaccharides during ripening of mango (Mangifera indica L). J. Sci. Food Agri. 83:1182-1186. Proctor, A. and L. C. Peng. 1989. Pectin transitions during blueberry fruit development and ripening. J. Food Sci. 54:385-387. Rathore, D. S. 1976. Effect of season on the growth and chemical composition of guava (Psidium guajava L.) fruit. J. Hort. Sci. 51:41-47. Renard, C. M. G. C., N. Dupont, and P. Guillermin. 2007. Concentrations and characteristics of procyanidins and other phenolics in apples during fruit growth. Phytochemistry 68:1128-1138. Reyes, M.U. and R.E. Paull. 1995. Effect of temperature and ethylene treatment on Guava (Psidium guajava L.) fruit ripening. Postharvest Biol. Technol. 6:357-365. Ryan, D., K. Robards, and S. Lavee. 1999. Changes in phenolic content of olive during maturation. J. Food Sci. Technol. 34:265-274. Shorter, A. J., D. C. Joyce, and D. R. Beasley. 1997. Effect of preharvest bagging on fruit calcium levels, and storage and ripening characteristics of ‘Sensation’ mangoes. Aust. Exper. Agri. 37:383-389. Singh, B. P., R. A. Singh, G. Singh ,and B. Killadi. 2007. Response of bagging on maturity, ripening and storage behaviour of ‘Winter Guava’. Acta Hort. 735:597-601. Sitrit, Y., J. Riov, and A. Blumenfeld. 1986. Regulation of ethylene biosynthesis in avocado fruit during ripening. Plant Physiol. 81:130-135. Sladjana, S., B. Vucelic-Radovic, and R. Stikic. 2007. Biochemical regulation of tomato fruit growth. Comparative Biochem. and Physiol. Part A 146:S274. Srivastava, H. C. and P. Narasimhan. 1967. Physiological studies during growth and development od different varieties of guava (Psidium guajava L.). J. Hort. Sci. 42:97-104. Thomas, R. L., J. J. Jen ,and C. V. Morr. 1981. Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development. J. Food Sci. 47:158-161. Thompson, D. S., W.J. Davies, and L. C. Ho. 1998. Regulation of tomato fruit growth by epidermal cell wall enzymes. Plant Cell Environ. 21:589-599. Tovar, M. J., M. J. Romero, J. Girona, and M. J. Motilva. 2002. L-phenylalanine ammonia-lyase activity and concentration of phenolics in developing olive (Olea europaea L. cv. Arbequina) fruit grown under different irrigation regimes. J. Sci. Food Agric. 82:892-898. Tukey, H. B. 1933. Growth of peach embryo in relation to growth of fruit and season of ripening. Proc. Am. Soc. Hortic. Sci. 30:209-218. Xue, Y., Y. Kubo, A. Inaba, and R. Nakamura. 1995. Effect of humidity on ripening and texture in banana fruit. J. Japan. Soc. Hort. Sci. 64:657-654. Yamaki, S. and K. Matsuda. 1977. Changes in the activities of some cell wall-degrading enzymes during development and ripening of Japanese pear fruit (Pyrus serotina Rehder var. culta Rehder). Plant Cell Physiol. 18:81-93. Yusof, S., S. Mohamed, and A. A. Bakar. 1988. Effect of fruit maturity on the quality and acceptability of guava puree. Food Chem. 30:45-58. Zauberman, G. and M. Schiffmann-Nadel. 1972. Pectin methylesterase and polygalacturonase in avocado fruit at various stages of development. Plant Physiol. 49:864-865. Zheng, Q. L., A. Nakatsuka, S. Taira, and H. Itamura. 2005. Enzymatic activity and gene expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in persimmon fruit. Postharvest Biol. Technol. 37:286-290.
摘要: 
本試驗的目的在探討套袋對‘珍珠拔’番石榴果實品質與生化特性的影響。冬果生長期長,套袋後至果實成熟需87天,春果生長期較短,只需71天,果實生長曲線皆呈雙S型。以聚乙烯塑膠袋內襯白色舒果套套袋的果實較套網袋者生長快速、果形較大且全可溶性糖含量較高;澱粉、總酚類化合物含量、過氧化酵素與苯丙胺酸脫氨裂解酶活性在二處理間無顯著差異。網袋處理較聚乙烯塑膠袋內襯白色舒果套處理的乙烯釋放率及呼吸率高。兩個季節的果實全可溶性糖隨生長發育逐漸增加,澱粉含量維持平穩,總酚類化合物含量與苯丙胺酸脫氨裂解酶活性變化趨勢相似。過氧化酵素可能與番石榴果實肥大有關。在八種不同套袋材質中顯示,以聚乙烯塑膠袋內襯白色舒果套的處理果實生長較快且果皮顏色翠綠,與套網袋者有顯著差異,銀粉聚乙烯塑膠袋內襯白色舒果套之果實N、P、K、Ca和Mg元素的含量最低,套網袋果實各種大量元素含量相對較高。除了Zn元素外,聚乙烯塑膠袋內襯白色舒果套處理的果實所含各微量元素都較其他處理低。不同套袋材質處理全可溶性糖含量除套網袋果實的含量較低外,其他各處理間沒有差異。澱粉含量也沒有差異。總酚類化合物含量與過氧化酵素活性,皆以套網袋與聚乙烯塑膠袋內襯網袋的處理最高,而銀粉聚乙烯塑膠袋內襯白色舒果套與聚乙烯塑膠袋內襯白色舒果套處理的果實最低。‘珍珠拔’番石榴雖然屬於非更年型的果實,但成熟後有容易軟化的問題。在比較品種間果實軟化相關物質的試驗中發現,‘梨子拔’果實後熟時乙烯釋放率及呼吸率均逐漸上升,並出現明顯之更年性高峰,ACC含量大量增加且ACC oxidase活性也之上升,而‘珍珠拔’和‘世紀拔’後熟時呼吸速率變化不大亦無高峰出現,乙烯釋放率與ACC含量極低,ACC oxidase活性後熟期才上升。三品種全可溶性糖含量隨果實發育而增加,除‘梨子拔’外,澱粉含量在各發育階段均無顯著差異。‘世紀拔’和‘梨子拔’果實水溶性果膠含量呈平穩增加,‘珍珠拔’在stageⅢ時水溶性果膠含量最高,之後減少,而各品種不同發育階段的不溶性果膠含量呈現不規則的變化。三品種番石榴的果膠甲酯酶(PE)活性以未熟果實最高,隨著果實發育PE活性逐漸下降,後熟期的活性最低。聚半乳糖醛酸酶(PG)活性方面,‘珍珠拔’與‘世紀拔’番石榴活性變化趨勢相似,以stageⅡ和stageⅢ時PG活性最高,而‘梨子拔’果實以綠熟期(stageⅣ) PG活性最高,三品種果實後熟期PG活性都明顯下降。

The purpose of this study was to investigate the effect of bagging on fruit quality and biochemical characteristics of ‘Jen-Ju Bar' guava. Fruit growth showed a double sigmoidal pattern, with winter fruit needing 87 days while spring fruit needing 71 days to reach the mature. Fruit bagging with expanded polystyrene net sleeve (EPNS) within polyethylene (PE) bag were rapid growth, increased fruit size, and increased total soluble sugar content. However starch and total phenolic compound, peroxidase and phenylalanine ammonia-lyase activity were no significantly between the two treatments. Fruit bagging with net bag had higher respiration rate and ethylene production during growth and development. Total soluble sugar content was increased, starch content remaining steadily, and similar currents of changes were total phenolic compound content and phenylalanine ammonia-lyase activity with growth and development both winter and spring fruit. Bagging on promoting fruit growth seems to be related to the peroxidase activity. Effect of different bagging material on fruit growth results showed, fruit bagging with EPNS within PE bag rapid and peel color was dark green, were significantly as compared with net bag. Fruit bagging with EPNS within bag were made with PE and silver powder (Silver-PE) that N, P, K, Ca, Mg concentrations was very low, and fruit bagging with net bag had higher N, P, K, Ca, Mg concentrations. Fruit bagging with EPNS within PE bag had lower mirco element concentrations compared with other treatments. Effect of different bagging material on fruit Zn concentrations, total soluble sugar and starch contents were no different. The results showed that total phenolic compound content and peroxidase activity to be similar on different bagging material, fruit bagging with EPNS within PE bag and net bag had higher total phenolic compound content and peroxidase activity than EPNS within Silver-PE bag and EPNS within PE bag. ‘Jen-Ju Bar' guava tends to turn soft after ripe. Biochemical and physical changes in fruits of three guava cultivars at different fruit development stage were studied. Results showed ‘Li-Tzy Bar' guava had higher respiration rate and ethylene production at ripening, exhibited a typical climacteric pattern of respiration, ACC content and ACC oxidase activity suddenly increased at ripening. While ‘Jen-Ju Bar' and ‘Shyh-Jii Bar' respiration rate, ethylene production and ACC content very low at different fruit development stage , and ACC oxidase activity suddenly increased at ripening, as well as ‘Li-Tzy Bar' guava. Changes in contents of the total soluble sugar increased progressively during the different fruit development stage. Except ‘Li-Tzy Bar' guava, starch content had no significant different. Water soluble pectin content of ‘Shyh-Jii Bar' and ‘Li-Tzy Bar' guava increased systematically up to the ripe stage, while ‘Jen-Ju Bar' guava increase at stageⅢ and then decreased. Change in hydrochloric acid soluble pectin content were checkered of ‘Jen-Ju Bar', ‘Shyh-Jii Bar' and ‘Li-Tzy Bar' guava at different fruit development stage. Pectinesterase (PE) activity increased at stageⅠ to stageⅢ and subsequently decreased, minimum activity at ripe stage. A similar pattern of changes in polygalacturonase (PG) activity of ‘Jen-Ju Bar' and ‘Shyh-Jii Bar', the PG activity highest at stageⅡ and stageⅢ. While ‘Li-Tzy Bar' guava at mature green stage (stageⅣ) had highest PG activity and three guava cultivars ripe stage PG activity decreased.
URI: http://hdl.handle.net/11455/28994
其他識別: U0005-2307200815541500
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.