Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29063
標題: 楊桃草酸含量之調查
Investigation of Oxalic Acid Content in Carambola (Averrhoa carambola L.)
作者: 林佳樺
Lin, Chia-Hwa
關鍵字: Carambola;楊桃;Oxalic Acid;草酸
出版社: 園藝學系所
引用: 王子慶、謝慶昌、林德勝。1997。甜楊桃果實外銷適性之研究。中華農研究 46(3): 278-293。 王武彰。1988。楊桃新品系試植觀察試驗。中華農業研究 37(2): 134-141。 王武彰。1991。楊桃「臺農一號」之育成。中華農業研究 40:396-406。 王武彰。1994。著果部位對楊桃產量與品質之影響。中華農業研究 43:330-335。 王武彰、楊淑惠。1993。加工用楊桃雜交後裔選拔。中華農業研究42: 292-302。 甘志勇、彭靖茹、梁立娟。2006。原子吸收法測定楊桃中的微量元素。廣東微量元素科學 13(10): 50-52。 許文寶、蘇明華、謝志南、賴瑞雲、鐘贊華。2003。楊桃初結果樹果實發育期間養份含量變化。亞熱帶植物科學 32(4):62。 游若篍、王武彰。1987。楊桃之品質成分與加工利用之研究。中華農業研究 36(2): 196-206。 彭新湘、李明啟。1992。植物中的草酸及其代謝。植物生理學通訊28(2):93-96。 農業統計年報。2008。5. 果品 (12) 楊桃、梨。96-97頁。 楊淑惠、王武彰。1993。秤錘種楊桃的貯藏品質。中華農業研究 42:387-395。 劉碧鵑、王德男、劉政道。2003。楊桃新品種臺農二號-正港。中華農業研究 52:207-217。 謝慶昌。1985。楊桃果實生長調查及採後處理之研究。國立台灣大學園藝學研究所碩士論文。台灣:台北。 Beruter, J. 2004. Carbohydrate metabolism in two apple genotypes that differ in malate accumulation. J. Plant Physiol. 161:1011-1029. Blingy, R., E. Gout, U. Heber, D. Walker, and R. Douce. 1997. pH regulation in acid-stressed leaves of pea plants grown in the presence of nitrate or ammonia salts: Studies involving 31PNMR spectroscope and chlorophyll fluorescence. Biochim. Biophys. Acta. 1320: 142–152. Britto, D. T., M. Y. Siddiqi , A. D. M. Glass, and H. J. Kronzucker. 2001. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proc. Natl. Acad. Sci. USA 98: 4255–4258. Çaliskan, M. 2000. The metabolism of oxalic acid. Turk. J. Zool. 24:103–106. Carolino, R. O. G., R. O. Beleboni, A. B. Pizzo, F. D. Vecchio, N. Garcia-Cairasco, M. Moyses-Neto, W. F. Santos, and J. Coutinho-Netto. 2005. Convulsant activity and neurochemical alterations induced by a fraction obtained from fruit Averrhoa carambola(Oxalidaceae: Geraniales). Neurochem. Int. 46:523–531. Chai, W, M. Liebman, S. Kynast-Gales, and L. Massey. 2004. Oxalate absorption and endogenous oxalate synthesis from ascorbate in calcium oxalate stone formers and non-stone formers. Am J Kidney Dis. 44:1060-1069. Chang, C. T., Y. C. Chen, J. T. Fang, and C. C. Huang. 2002. Star fruit (Averrhoa carambola) intoxication: An important cause of consciousness disturbance in patients with renal failure. Ren. Fail. 24(3): 379–382. Davies, D. D. and H. Asker. 1983. Synthesis of oxalic acid by enzymes from lettuce leaves. Plant Physiol. 72: 134-138. Debolt, S., V. Melino and C. M. Ford. 2007. Ascorbate as a biosynthetic precursor in plants. Ann. Bot. 99: 3-8. Famiani, F., N. G. M. Cultrera, A. Battistelli, V. Casulli, P. Proietti, A. Standardi, Z. H. Chen, R. C. Leegood and R. P. Walker. 2005. Phosphoenolpyruvate carboxykinase and its potential role in the catabolism of organic acids in the flesh of soft fruit during ripening. J. Exp. Bot. 56(421): 2959-2969. Fang, H. C., C. L. Chen, P. T. Lee, C. Y. Hsu, C. J. Tseng, P. J. Lu, S. L. Lai, H. M. Chung, K. J. Chou. 2007. The role of oxalate in star fruit neurotoxicity of five-sixths nephrectomized rats. Food Chem. Toxicol. 45: 1764–1769. Fang, H. C., C. L. Chen, P. T. Lee, C. Y. Hsu, C. J. Tseng, P. J. Lu, S. L. Lai, H. M. Chung, K. J. Chou. 2008. Mechanisms of star fruit-unduced acute renal failure. Food Chem. Toxicol. 46:1744-1752. Gensler, M. and H. L. Schmidt. 1994. Isolation of the main organic acids from fruit juices and nectars for carbon isotope ratio measurements. Analytica. Chimica. Acta. 299: 231-237. Guyton, A. C. and J. E. Hall. 2006. pp. 307-326. In: Textbook of medical physiology (11th edition). W.B. Saunders company co. Hanger, L. and R. H. Herman. 1973. Oxalate metabolism I. Am. I. Clin.Nuir. 26: 75-765. Holmes, R. P., H. O. Goodman, and D. G. Assimos. 2001. Contribution of dietary oxalate to urinary oxalate excretion. Kidney Int. 59: 270–276. Ji, X. M. and X. X. Peng. 2005. Oxalate accumulation as regulated by nitrogen forms and its relationship to photosynthesis in rice (Oryza sativa L.). J. Integ. Plant Biol. 47(7):831-838. Kaneta, T., T. Bada, T. Ohtsubo, and F. Ikeda. 2004. Varietal differences in oxalic acid concentration and enzyme activity related to oxalic acid biosynthesis in carambola (Averrhoa carambola L.). Hort. Res. (Japan). 3(4):415-419. Kaneta, T., T. Bada, T. Ohtsubo, and F. Ikeda. 2005. Relationship among oxalic acid and some mineral contents in the leaves of hybrid seedling between tart and sweet cultivar of Carambola (Averrhoa carambola L.). Hort. Res. (Japan). 4(2):207-211. Keates, S. E., N. M. Tarlyn, F. A. Loewus, V. R. Franceschi. 2000. L-ascorbic acid and L-galactose are sources for oxalic acid and calcium oxalate in Pistia stratiotes. Phytochemistry 53: 433-440. Kirkby, E A. and A. H. Knight. 1977. Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol. 60: 349-353. Kostman, T. A., N. M. Tarlyn, F. A. Loewus, and V. R. Franceschi. 2001. Biosynthesis of L-ascorbic acid and conversion of carbons 1 and 2 of L-ascorbic acid to oxalic acid occurs within individual calcium oxalate crystal idioblasts. Plant Physiol. 125: 634–640 Lane, B. G. 2000. Oxalate oxidases and differentiating surface structure in wheat: germins. Biochem. J. 349: 309-321. Libert, B. and V. R. Franceschi. 1987. Oxalate in crop plants. J. Agric. Food Chem. 35:926-938 Lobit, P., M. Genard, B. H. Wu, P. Soing, and R. Habib. 2003. Modelling citrate metabolism in fruits: responses to growth and temperature. J. Exp. Bot. 54:2489-2501. Loewus, F. A. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52: 193-210. Magalhaes J. R. and D. M. Huber. 1991. Response of ammonium assimilation enzymes to nitrogen form treatments in different plant species. J. Plant Nutr. 14: 175–185. Massey, L. K. 2007. Food oxalate: Factors affecting measurement, biological variation, and bioavailability. J. Am. Diet Assoc. 107:1191-1194. Morgan, S. H., E. R. Maher, P. Purkiss, R. W. E. Watts and J. R. Curtis. 1988. Oxalate metabolism in end-stage renal disease: the effect of ascorbic acid and pyridoxine. Nephrol. Dial. Transplant. 3: 28-32. Nakata, P. A. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 164: 901-909. Neto, M. M., J. A. C. Costa, N. Garcia-Cairasco, J. C. Netto, B. Nakagawa and M. Dantas. 2003. Intoxication by star fruit (Averrhoa carambola) in 32 uraemic patients: Treatment and outcome. Nephrol. Dial. Transplant. 18:120–125. Nuss, R. F. and F. A. Loewus. 1978. Further studies on oxalic acid biosynthesis in oxalate-accumulating plants. Plant Physiol. 61: 590-592. Oehlschläger, S., S. Fuessel, A. Meye, J. Herrmann, M. Froehner, S. Albrecht, and M. P. Wirth. 2009. Role of cellular oxalate in oxalate clearance of patients with calcium oxalate monohydrate stone formation and normal controls. Urology 73: 480–483. Penniston, K. L. and S. Y. Nakada. 2009. Effect of dietary changes on urinary oxalate excretion and calcium oxalate supersaturation in patients with hyperoxaluric stone formation. Urology 73: 484–489. Raven, J. A. and F. A. Smith. 1976. Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol. 76: 415–431. Richardson, A. C., K. B. Marsh, H. L. Boldingh, A. H. Pickering, S. M. Bulley, N. J. Frearson, A. R. Ferguson, S. E. Thornber, K. M. Bolitho, and E. A. Macrae. 2004. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ. 27: 423–435 Rumsby, G. 2008. Oxalate transport as contributor to primary hyperoxaluria: the jury is still out. Am. J. Kidney Dis. 52(6): 1031-1034. Saari, N., A. Osman, J. Selamat, and S. Fujita. 1999. Ascorbate oxidase from starfruit (Averrhoa carambola): Preparation and its application in the determination of ascorbic acid from fruit juices. Food Chem. 66: 57-61. Saradhuldhat, P. and R. E. Paull. 2007. Pineapple organic acid metabolism and accumulation during fruit development. Sci. Hortic. 112: 297–303. Scheible, W. R., A. González-Fontes, M. Lauerer, B. Müller-Rober, M. Caboche, and M. Stitt. 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783-798. Shen, T. C., Y. Yang, S. R. Hsu, C. F. Chang, and C. C. Chou. 2005. Star fruit intoxication in uremic patients: Potential pitfalls in the emergency department. J. Emerg. Crit. Care Med. 16(1): 37-42. Streeter, J. G. 2005. Effects of nitrogen and calcium supply on the accumulation of oxalate in soybean seeds. Crop Sci. 45:1464-1468. Wilson, C. W., P. E. Shaw, and R. J. K. Jr. 1982. Analysis of oxalic acid in carambola (Averrhoa carambola L.) and spinach by high-performance liquid chromatography. J. Agric. Food Chem. 30(6): 1106-1108. Wu, B.H., B. Quilot, M. Génard, J. Kervell, and S.H. Li. 2005. Changes in sugar and organic acid concentrations during fruit maturation in peaches, P. davidiana and hybrids as analyzed by principal component analysis. Sci. Hortic. 103: 429–439. Yadav, G. D. and V. R. Gupta. 2000. Synthesis of glyoxalic acid from glyoxal. Process Biochem. 36:73–78. Yamaki, Y. T. 1990. Seasonal changes in the organic acids in juice of citrus fruits. J. Japan. Soc. Hort. Sci. 58(4):895-898. Yamazaki, T., T. Niizuma and T. Taguchi. 1971. The relationship between organic acid and potassium content in apple juice. J. Japan. Soc. Hort. Sci. 40(3): 68-71. Yang, J. C. and F. A. Loewus. 1975. Metabolic conversion of L-ascorbic acid to oxalic acid in oxalate-accumulating plants. Plant Physiol. 56: 283-285. Zhang, Y., X. Lin, Y. Zhang, S. J. Zheng, and S. Du. 2005. Effects of nitrogen levels and nitrate/ammonium ratios on oxalate concentrations of different forms in edible parts of spinach. J. Plant Nutr. 28: 2011–2025.
摘要: 
近年來消費者對飲食安全與人體健康的重視提升,經媒體多次報導腎臟病患者食用楊桃導致腎臟病變甚至死亡的案例,消費者對購買楊桃的意願降低許多,使楊桃產業蒙受損失。本研究針對楊桃中可能引發腎臟病變的草酸成分,進行相關的品種篩選與育種選拔,以期降低楊桃果實的草酸含量。

針對農業試驗所鳳山熱帶園藝試驗分所保留的30種楊桃品種進行有機酸含量鑑定,發現酸味種、鹽埔酸味種、Golden Star種的草酸含量甚高,不適合做為低草酸楊桃育種之母本。石塹種、馬來八、金龍種、台農二號、CTND03種、竹葉種與青墘厚等品系,草酸含量為本次實驗鑑定中最低,建議可做為低草酸楊桃育種之母本。

楊桃葉片與果實草酸含量無顯著相關性,故由葉片草酸進行低草酸楊桃品系篩選可能不甚恰當,仍應以果實草酸含量為準。楊桃果實草酸含量,與可滴定酸以及抗壞血酸含量有顯著正相關,可做為低草酸楊桃品系的篩選指標。果實生長期間各階段草酸含量間皆有顯著相關,顯示由幼果期進行低草酸品系篩選即可。綜觀楊桃果實生長期間,隨成熟度提升各大量元素皆有下降的趨勢;欲將大量元素列入低草酸品系的篩選指標,則以到達綠熟期後相關性較高。

盆栽馬來種楊桃並供給同等總氮量之氮肥。與單獨供應銨態氮之氮肥相較之下,供給混合硝酸態氮與銨態氮型態之氮肥,楊桃果實草酸量有明顯的下降,與草酸生成相關之酵素乙醇酸氧化酶活性也較低,同時可溶性糖累積量增加。於楊桃植株生長期間供給含硝酸態氮氮肥,對降低楊桃草酸的累積量有明顯效果。

Recently, consumers have gained lots of attention in the safety of food and human health. As media reported that many cases of kidney patients had died after ingested carambola, consumers lost will to buy carambola and made big damege of carambola industry. This study focused on the oxalic acid in carambola, which may cause kidney diseases, and processed selection of varieties and breeding to lower the oxalic acid content in carambola.

We measured the organic acid content of 30 varieties kept in Fengshan Tropical Horticultural Experiment Branch and the results indicated that ‘Tart', ‘Yan Pu Tart' and ‘Gloden star' carambola fruits had high content of oxalic acid, which were not suitable for the maternal plant as low-oxalic-acid carambola breeding. On the other side, ‘Shih Cian', ‘Malaysia 8', ‘Tainoung No.2', ‘Jin Long', ‘CTND03', ‘Zhu Ye' and ‘Cing Cian Hou' carambola fruits had the lowest content of oxalic acid, which were suitable for the maternal plant as low-oxalic-acid carambola breeding.

The content of oxalic acid in leaf and fruit had no significant correlation, so it would be not appropriate to select low-oxalic-acid varieties according to the content of oxalic acid in leaf. One should take the content of oxalic acid in fruit as selecting standard. The content of oxalic acid in carambola fruit had significant correlation with both titratable acidity and the content of ascorbic acid. Both could be the selecting index of low-oxalic-acid varieties. The content of oxalic acid had significant difference during fruit development and had correlation between the oxalic acid of young and ripe fruit. Overview the development of carambola fruit, as the maturity raised, macro elements had the trend of decrease. Considering of keeping macro elements as the selecting standard, the correlation would be higher after the green-ripe stage.

We offered fertilizers with the same content of total nitrogen to bolt-planting ‘Malaysia'carambola. Compared with serving only ammonia, the mixture of nitrate and ammonia had the effect of decreasing the content of oxalic acid in carambola fruit. The activity of glycolate oxidase, which related to oxalic acid simulation, also lowed, and the accumulation of total soluble suger increased. Using nitrate fertilizer duing plant growing had obvious effect of lowering the content of oxalic acid in carambola fruit. It should process further study to achieve the biggest benefit.
URI: http://hdl.handle.net/11455/29063
其他識別: U0005-0802201010193000
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.