Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29067
標題: 催花後不同發育階段低溫處理對 ‘台農十七號’鳳梨植株及果實發育之影響
Effect of Cold Treatment at Different Stage after Forced-flowering on the Development of 'Tainung No.17' Pineapple Plant and Fruit
作者: 曾顯皓
Tseng, Hsien-Hao
關鍵字: pineapple;鳳梨;ethylene;photosynthesis;mineral elements;寒害;乙烯;光合作用;礦物元素
出版社: 園藝學系所
引用: 中央象局全球資訊網。2009。一月份低溫及低溫日期。 王怡尹。2007。鳳梨田間寒害與採收過程受傷之研究。國立嘉義大學園藝學研究所碩士論文。pp. 56-61. 台灣農業統計年報。2005。行政院農委會編印。 行政院農業委員會。2006。鳳梨知識主題網。取自http://kmweb.coa.gov.tw /subject/mp.asp?mp=7。 行政院農業委員會。2008。農業新聞 / 寒害災害資料。 朱鈞。1997。果樹天然災害預防及復育手冊-作物冷害時之生理反應。果樹天然災害預防及復育手冊。台中區農業改良場特刊第39號。pp. 3。 李學勇。1985。鳳梨演進簡史。中國園藝 31:1-5。 柯勇。2002。植物生理學。藝軒圖書出版社。 范國慶。2002。數種鮮食品種鳳梨季節性品質之研究。國立嘉義大學農學研究所碩士論文。pp. 4-14。 區少梅、林聖敦、林介義、溫晉慶。1993。椪柑適當採收條件之探討。中國園藝 39(3):115-127。 張清勤。1991。鳳梨台農四號外銷果實採收成熟度之研究。中華農業研究 40(1):37-44。 張清勤、官青杉。2001。鳳梨品種改良及回顧及未來展望。台灣鳳梨品種改良。與病蟲害管理研討會專刊。pp. 1-14。 黃碧海。2004。台灣鳳梨產業銷現況與發展。台灣鳳梨研究與發展研討會專刊。國立嘉義大學編印。pp. 1-12。 渡邊正一。1953。台灣鳳梨之研究。中國園藝學會出版。張奇荷、李學鑑譯。pp. 12-24。 陳文孝。1997。龍眼開花期至果實發育期間葉片無機養分含量變化之研究。提升果樹產業競爭力研討會專集II。pp. 115-120。 董立。1957。鳳梨的產(花)期調節(上)。果農合作(360)31-36。 楊雅薰。1991。番石榴葉片及果實無機養份和碳水化合物濃度之調查。國立中興大學園藝學研究所碩士論文。pp. 101。 劉富文。1994。園產品採收後處理及貯藏技術。台灣省青果運銷合作社。pp32-33。 賴文龍、黃裕銘。甜柿樹體無機養份之變化。2004。甜柿栽培技術與經營管理研討會專集。pp. 117-129。 顏妙芬。1999。數種鮮食鳳梨果實發育期間之理化特性變化。國立中興大學園藝學研究所碩士論文。pp. 5-11。 小那霸 安優。 2002. Studies on the Physiology and Ecology of Pineapple. 沖繩縣農業試驗場研究報告 第25號:30-42。 Adams, P. A., D. E. Nelson, S. Yamada, W. Chmara, R. G. Jensen, H. J. Bohnert, and H. Griffiths. 1998. Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 138:171-190. Adu-Amankwa, P. A. 1997.Effect of time of harvest on the fruit quality characteristics of pineapple cv‘Smooth Cayenne’in two area of southern Ghana. Acta Hort. 425:531-538. Albrechtova J. T. P., S. Heilscher, L. Leske, P. Walczysko and E. Wagner. 2003. Calcium and pH patterning at the apical meristem are specifically altered by photoperiodic flower induction in Chenopodium spp. Plant, Cell Enviro. 26:1985-1994. Aldrich, S. R. 1973. Plant analysis:Problems and opportunities. pp. 213-221 In:L. M. Waslsh and J. D. Beaton(Ed.) Soil testing and plant analysis. Soil Sci. Soc. Amer., Inc Madison, Wis. U. S. A. Allen, D. J. and D. R. Ort. 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. Plant Sci. 6:36-42. Allen, D. J., K. Ratner, Y. E. Giller, E. E. Gussakovsky, Y. Shahak, and D. R. Ort. 2000. An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J. Exp. Bot. 51:1893-1902 Allen, J. F. 1992. Protein phosphorylation in the regulation of photosynthesis. Biochimica et Biophysica Acta. 1098:275-335. Aro, E. M., I.Virgin, and B. Andersson. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et biophysica acta. Bioenergetics. 1143:113-134. Autio, W. R. and W. J. Bramlage. 1986. Chilling sensitivity of tomato fruit in relation to ripening and senescence. J. Am Soc Hortic. Sci. 111:201-204. Avallone, S., J. P. Guiraud, J. M. Brillouet, and C. Teisson. 2003. Enzymatic browning and biochemical alterations in black spots of pineapple (Ananas comosus (L.) Merr.). Current Microbiol. 47:113-118. Baker, N. R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. Barber, R. F. and J. E. Thompson. 1980. Senescence-dependent increase in permeability of liposomes prepared from cotyledon membranes. J Exp Bot 31:1305-1313. Bartholome, A. P., P. Ruperez, and C. Fudter. 1996. Non-volatile organic acids, pH and titratable acidity changes in pineapple fruit slices during frozen storage. J. Sci. Food. Agric. 70:475-480. Bartholomew, D. P. 1977. Inflorescence development of pineapple (Ananas comosus [L.] Merr.) induced to flower with ethephon. Bot. Gaz. 138:312-320. Bartholomew, D. P. and R. E. Paull. 1986. Pineapple. pp. 371-388. In:CRC Handbook of Fruit Set and Development(ed. S. P. Monselise).CRC Raton. Florida.. Bates, T. E. 1971. Factors affecting cirtical nutrient concentrations in plants and their evalution:a review. Soil Sci. 112:116-130. Bevins, M. A., S. Madhavan, and J. Markwell. 1993. Two sweetclover (Melilotus alba Desr.) mutants temperature sensitive for chlorophyll expression. Plant Physiol. 103:1123-1131. Bondad, N. D. 1973. Effect of ethephon on flowering, fruiting and slip production of ‘Smooth Cayenne’pineapple. Philippine Geog. J. 17:1-10. Borland, A. M. and H. Griffiths. 1996. Variations in the Phases of crassulacean acid metabolism and regulation of carboxylation patterns determined by carbon-isotope-discrimination techniques. pp. 230-249. In: Winter K, Smith JAC, eds. Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution.Berlin: Springer-Verlag Borland, A. M., H. Griffiths, M. S. J. Broadmeadow, M. C. Fordham, and C. Maxwell. 1994. Carbon-isotope composition of biochemical fractions and the regulation of carbon balance in leaves of the C3-crassulacean acid metabolism plant Clusia minor L. growing in Trinidad. Plant Physiol. 106:493–501. Borland, A. M., J. Hartwell, G. I. Jenkins, M. B. Wilkins, and H. G. Nimmo. 1999. Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Planta. 205:342-351. Borochov, A. and R. Faiman-Weinberg. 1984. Biochemical and biophysical changes in plant protoplasmic membranes during senescence. What''s New Plant Physiol. 15:1-4. Brulfert, J., D. Ravelomanana, S. Güçlü1 and M. Kluge. 1996. Ecophysiological studies in Kalanchoë porphyrocalyx (Baker) and K. miniata (Hils et Bojer), two species performing highly flexible CAM. Photosynthesis Research. 49:29-36. Cai, C., C. Xu, X. Li, I. Ferguson, and K. S. Chen. 2006. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biol. Tec. 40:163-169. Chauhan, p. s. and R. M. Pandey.1984. Relative 14CO2 fixation by leaves and fruits, and translocation of 14C-sucrose in mango. Sci. Hort.(22):121-128. Chen, C. C. and R. E. Paull. 2000a. Change in sugar contents and activities of sugar metabolizing enzymes in pineapple fruit flesh during development. Acta Hort. 529:191-195. Chen, C. C. and R. E. Paull. 2000b. Sugar metabolism and pineapple flesh translucency. J. Amer. Soc. Hort. Sci. 125:558-562. Christopher, J. T. and J. A. M. Holtum. 1996. Patterns of carbohydrate partitioning in leaves of Crassulacean acid metabolism species during deacidification. Plant Physiology. 112:393-399. Christopher, J. T. and J. A. M. Holtum. 1998. Carbohydrate partitioning in the leaves of the Bromeliaceae performing C3 photosynthesis or CAM. Australian J. Plant Physiol. 25:371-376. Clark, C. J. and G. S. Smith. 1990 Seasonal changes in the composition distribution and accumulation of mineral nutrients in persimmon fruit. Sci. Hort. 42:99-111. Collins, J. L. 1960. The pineapple. Leonard Hill, London. Coombe, B. G. 1976. The development of fleshy fruits. Ann. Rev. Plant Physiol. 27:507-528. Cooper, W. C. 1942. Effect of growth substances on flowering of the pineapple under Florida conditions. Proc. Florida State Hort. Sci. 41:93-98.. Cornic, G. and J. Ghashghaie. 1991. Effect of temperature on net CO2,assimilation and photosystem II quantum yield on electron transfer of French bean leaves (Phaseolus vulgaris L.) during drought stress. Planta. 183:178-184. Cote, F. X. 1988. Photosynthese et photorespiration dune plante a metabolisme crassulaceen:. Ananas comosus(L.)Merr. Etude des echanges gazeux. Doctorat en Science, Universite de Toulouse, Toulouse. Cote, F. X., M. Andre, M. Folliot, D. Massimino, and A. Daguenet. 1989. CO2 and O2 exchanges in the CAM plant Ananas comosus(L.) Merr. Plant Physiol. 89:61-68. Cunha, G.A.P. 2005. Applied aspects of pineapple flowering. Bragantia Campinas, 64(4):499-516. Das, N., S. N. Baruah, and A. Baruah. 1965. Induction of flowering and fruit formation of pineapples with the aid of acetylene and calcium carbonate. Indian Agr. 9:15-23. de Mattos, E. A. and U. Lu¨ttge. 2001. Chlorophyll fluorescence and organic acid oscillations during the transition from CAM to C3-photosynthesis in Clusia minor L. (Clusiaceae). Annals of Botany. 88:457-463. Dodd, A. N., A. M. Broland, R. P. Haslam, H. Griffiths, and K. Maxwell. 2002. Crassulacean acid metabolism:plastic, fantastic.J. of Exp. Bot.(53):569-580. Dull, G. G. 1971. The pineapple:general. In:Hulme, A. C.(ed.)The biochemistry of fruit and their products. 2:303-331. Edwards, G. E. and N. R. Baker. 1993. Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynthesis Researach. 37:89-102. Fallahi, E., I. J. Chun, G. H. Neilsen, and W. M. Colt. 2001. Effects of three rootstocks on photosynthesis, leaf mineral nutrition, and vegetative growth of ‘BC-2 Fuji’apple trees. J. Plant Nutri. 24:827-834. Ferguson, I. B. 1984. Calcium in plant senescence and fruit ripening. Plant, Cell and Environ. 7:477-489. Faris, J. A. 1926. Cold chlorosis of sugar cane. Phytopathology. 16:885-891. Flexas, J., M. Badger, W. S. Chow, H. Medrano, and C. B. Osmond. 1999. Analysis of the relative increase in photosynthetic O2 uptake when photosynthesis in grapevine leaves is inhibited following low night temperatures and/or water stress. Plant Physiol. 121:675-684. Fryer, M. J., K. Oxborough, B. Martin, D. R. Ort, and N. R. Baker. 1995. Factors associated with depression of photosynthetic quantum efficiency in Maize at low growth temperature. Plant Physiol. 108:761-767. Genty, B., J. Harbinson, and N. R. Baker. 1990. Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiol. and Biochem. 28:1-10. Genty, B., J. M. Briantais and, N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta. 990:87-92. Gong, H. and S. Nilson. 1989. Effect of temperature on photoinhibition of photosynthesis, recovery, and turnover of the 32 kD chloroplast protein in Lemna gibba. J. Plant Physiol. 135:9-14. Gortner, W. A. 1965 Chemical and physical development of pineapple fruit.IV. Plant pigment constituents. J. Food Sci. 30:30-32. Gortner, W. A., G. G. Duall, and B. H. Krauss. 1967. Fruit development, maturation, ripening, and senescence:a biochemical basis for horticultural terminology. HortScience. 2(4):141-144. Govindachary, S., N. G. Bukhov, D. Joly, and R. Carpentier. 2004. Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling -sensitive and -tolerant plants. Physiol. Planta. 121:322-333. Gregory, F. G. 1937. Mineral nutrition of plants. Ann. Rev. Biochem. 6:557-578. Griffiths, H., B. Helliker, A. Roberts, R. P. Haslam, J. Girnus, W. E. Robe, A. M. Borland, and K. Maxwell. 2002. Regulation of Rubisco activity in CAM plants: better late than never. Functional Plant Biology. 29:689-696. Hamner, K. C. and G. T. Nghtingale. 1946. Ascorbic acid content of pineapples as correlated with environmental factors and plant composition. Food Res. 11:535-541. Hariyadi, P. and K. L. Parkin. 1991. Chilling-induced oxidative stresas in cucumber fruits. Postharvest Biol. Technol. 1:33-45. Hasselt, P. R. 1974. Photo-oxidative damage in cucumis leaves during chilling. Plant physiology and biochemistry. 74-80. Havelange, A. 1989. Levels and ultrastructural localization of calcium in Sinapis alba during the floral transition. Plant Cell Physiol. 30:351-358. Herth, W., H. D. Reiss, B. Hertler, Rbauer, K. Traxel and C. Ender. 1985. Localization of potential Ca2+ binding sites in lily pollentubes and maize calyptra cells:Transmission electron microscopy, proton microprobe analysis and electron spectroscopic imaging. J. Ultrastruct. Res. 93:71-86. Herolo, A. 1984. Biochemistry and physiology of synthesis of starch in leaves: autotrophic and heterotrophic chloroplasts. pp. 181-204. In Storage Carbohydrates in Vascular Plants, ed. D. H. Lewis. Cambridge University Press, Cambridge. Hewajulige, I. G. N., S. W. Wijeratnam, M. Abeysekere, and R. L. C. Wijesundera. 2003. Fruit calcium concentration and chilling injury during low temperature storage of pineapple. Sci Food Agric. 83:1451-1454. Hewajulige, I. G. N., S. W. Wijeratnam, and R. L. C. Wijesundera. 2006. Pre-harvest application of calcium to control black heart disorder in “Mauritius” pineapples during low-temperature storage. Sci Food Agric. 86:420–424. Huner, N. P. A., G. Öquist, and F. Sarhan. 1998. Energy balance and acclimation to light and cold. Trends Plant Sci. 3:224-230. Hutchison, R. S., Q. Groom and R. Donald. 2000. Differential effects of chilling-induced photooxidation on the redoxregulation of photosynthetic enzymes.Biochemistry. 39:6679-6688. In-Keun, P. and S. Tsunoda 1979. Effect of low temperature on chloroplast structure in cultivars of rice. Plant & Cell Physiol. 20(7) :1449-1453. Ishikawa, H. A. 1996.Ultrastructural features of chilling injury:injured cells and the early events during chilling of suspensioncultured mung bean cells. Am. J. Bot. 83:825-835. Jagels, R. 1970. Photosynthetic apparatus in Selaginella. II. Changes in plastid ultrastructure and pigment content under different light and temperature regimes. Canadian J. Bot. 48:1853-1860. Jones, J. B. J. R. 1985. Soil testing and plant analysis. Hort . Rev. 7:1-68. Jones T. L., D. E. Tucker, and D. R. Ort 1998. Chilling delays circadian pattern of sucrose phosphate synthase and nitrate reductase activity in tomato. Plant Physiol. 118:149-158. Kana, R., D. Lazar, O. Prasil, and J. Naus. 2002. Experimental and theoretical studies on the excess capacity of photosystem II. Photosynth Res 72:271-284. Kenworthy, A. L. 1973. Plant analysis as an aid in fertilizing orchards. pp. 381-392. In:L. M. Walsh and J. D. Beaton(Ed.)Soil testing and plant analysis. Soil Sci. Soc. Amer. Inc. Madison, Wis. U. S. A. Kerns, K. R. 1936. Acetylene treatment of plants. Pineapple News 10:6-8. King, M. M. and P. M. Ludford. 1983. Chilling injury and electrolyte leakage in fruit of different tomato cultivars. J Am. Soc. Hort. Sci. 108:74-77. Kingston-Smith, A. H., J. Harbinson, J. William, and C. H. Foyer. 1997. Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol. 114: 1039-1046. Kingston-Smith, A. H. and C. H. Foyer. 2000. Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J. Experi. Bot. 51:123-130. Klausner, R. D., A. M. Kleinfeld, R. L. Hoover, and M. J. Karnovsky. 1980. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 255:1286-1295. Kluge, M., O. L. Lange, M. Eichmann, and R. Schmid. 1973. Diurnaler Sfiurerhythmus bei Tillandsia usneoides: Untersuchungen fiber den Weg des Kohlenstoffs sowie die Abhfingigkeit des CO2-Gaswechsels von Lichtintensitfit, Temperatur und Wassergehalt der Pflanze. Planta. 112:357-372. Kluge, M. and J, Brulfert. 1996. Crassulacean acid metabolism in the genus Kalanchoe¨: ecological, physiological and biochemical aspects. pp. 324–335 .In: Winter K, Smith JAC,(eds). Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Berlin: Springer-Verlag, Kluge, M., B. Razanoelisoa, and J. Brulfert. 2001. Implications of genotypic diversity and phenotypic plasticity in the ecophysiological success of CAM plants, examined by studies on the vegetation of Madagascar. Plant Biology 3:214-222. Kluge, M., B. Razanoelisoa, D. Ravelomanana, and J. Brulfert. 1992. In situ studies of crassulacean acid metabolism in Kalanchoe¨ beharensis Drake del Castillo, a plant of the semi-arid southern region of Madagascar. New Phytologist. 120:323-334. Kratsch, H. A. and R. R. Wise. 2000. The ultrastructure of chilling stress. Plant Cell Environ. 23:337-350. Krause, G. H. 1994. Photoinhibition induced by low temperatures. pp. 331-348 .In:Baker, N. R., Bowyer, J. R. (ed.):Photoinhibition of Photosynthesis:From molecular mechanisms to the field. Bios Scientific Publishers, Oxford. Krall, J. P. and G. E. Edwards. 1991. Environmental effects on the relationship between quantum yield of carbon assimilation and in vivo PSII electron transport in maize. Australian J. Plant Physiol. 18:267-278. Kudoh, H. and K. Sonoike. 2002. Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta. 215:541-548. Kuo, S. and K. L. Parkin. 1989. Chilling injury in cucumber(Cucumos sativus L.)associated with lipid peroxidation as measured by ethane evolution. J. Food Sci. 54:1488-1491. Lange, O. L. and M. Zuber 1980. Temperaturabh/ingigkeit des CO2-Gaswechsels stammsukkulenter Asclepiadaceen mit Sfiurestoffwechsel. Flora. 170:529-553. Leegood, R. C. and G. E.Edwards, 1996. Carbon metabolism and photorespiration: temperature dependence in relation to other environmental factors. pp. 191–221. In Photosynthesis and the Environment (Baker, N.R., ed.), Kluwer Academic. Li, B., G. Lin, and F. Liu. 1995. Relationship between fruit quality, storability and mineral composition of apples. J. Fruit Sci. 12:141-145. Li, X. G., X. M. Wang, Q. W. Meng, and Q. Zou. 2004. Factors limiting photosynthetic recovery in sweet pepper leaves after short-term chilling stress under low irradiance. Photosynthetica. 42 : 257-262. Lüttge, U. 1987. Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol. 106:593-629. Lyons, J. M. 1973. Chilling injury in plants, Annu Rev. Plant Physiol. 24:455-466. Lyons, J. M. and J. K. Raison. 1970. Oxidative activity of mitochondria isolated form plant tissues sensitive and resistant to chilling injury. Plant Physiol. 45:386-389. Marianne, P., H. P. Janett, U. Lüttge, and E.Medina. 2003. Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C3 bromeliads. New Phytologist. 157:649–656. Marques, J. R., P. J. Hofman, and A. H. Wearing. 2003. Rootstocks influence ‘Hass’avocado fruit quality and fruit minerals. J. Hort. Sci. Bio. 78:673-679. Marschner, H. 1983 General introduction to the mineral nutrition of plants. pp. 6-60. In‘Encyclopedia of plant physiology, New Series’(Ed.)Springer-Verlag, Berlin and New York. Vol. 15A. Martin, B., D. R. Ort, and J. S. Boyer. 1981. Impairment of photosynthesis by chilling-temperatures in tomato. Plant Physiol. 68:329-334. Maxwell, K. A. M. Borland, R. P. Haslam, B. R. Helliker, A. Roberts, and H. Griffiths. 1999. Modulation of Rubisco activity during the diurnal Phases of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol. 121:849-856. McDonald, R. E. and M. K. Kushad. 1986. Accumulation of putrescine during chilling injury of fruits. Plant Physiol. 82:324-326. McMurdo, A. C. and J. M. Wilson. 1980. Chilling injury and Arrhenius plots. Cryo Lett. 1:231-238. Medina, E., M. Popp, E. Olivares, H. P. Janett, and U. Luttge. 1993. Daily fluctuations of titratable acidity, content of organic acids(malate and citrate)and soluble sugars of varieties and wild relatives of Ananas comosus L. growing under natural tropical conditions. Plant Cell Environ. 16:55-63. Melis, A. 1999. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo? Elsevier Science 4:130-135. Mengel, K. and E. A. Kirkby. 1982. Priniciples of plant nutrition. 3rd. ed. Int. Potash Inst. Bern, Switzerland. Menzel, C. M., M. L. Carseldine, and D. R. Simpson. 1987. The effect of leaf age on nutrient composition of non-fruiting litchi(Litchi chinensis Sonn.). J. Hort. Sci. 62:273-279. Miller, D. D., D. A. Callaham, D. J. Gross and P. K. Hepler. 1992. Free Ca2+ gradient in growing pollen tubes of Lilium. J. Cell Sci. 101:7-12. Miller, E. V. and G. E. Fulton. 1980. Pineapple juice. In Fruit and Vegetable Process Technol. pp:180-211. Min, X. J. and D. P. Bartholomew. 1993. Effects of growth regulators on ethylene production and floral initiation of pineapple. Acta Horticulturae Honolulu. 334:101-112. Moradshahi, A., H. M. Vines, and C. C. Black. 1977. CO2 exchange and acidity levels in detached pineapple, Ananas comosus (L), Merr, leaves during the day at various temperatures, O2 and CO2 concentrations. Plant Physiol. 59:274-278. Murata, N. and J. Yamaya. 1984. Temperature-dependent phase behavior of phosphatidylglycerols from chilling-sensitive and chilling-resistant plants. Plant Physiol. 74:1016-1024. Murphy, C. and J. M. Wilson. 1981. Ultrastructural features of chilling-injury in Episcia reptans. Plant Cell Enviro. 4:261-265. Musser, R. L., S. A. Thomas, R. R. Wise, T. Peeler, and A. W. Naylor. 1984. Chloroplast ultrastructure, chlorophyll fluorescence,and pigment composition in chilling-stressed soybeans. Plant Physiology. 74:749–754. Neales, T. F. 1973. Effect of night temperature on the assimilation of carbon dioxide by mature pineapple plants, Ananas comosus (L) Merr. Aust J biol Sci. 26:539-546. Neales, T. F., P. J. M. Sale, and C. P. Meyer. 1980. Carbon dioxide assimilation by pineapple plants, Ananas comosus (L) Merr. II Effects of variation of the day/night temperature regime. Aust. J. Plant Physiol. 7:375-385. Nguyen, X. V. and P. Mazliak. 1990. Chilling injury induction is accompanied by galactolipid degradation in tomato pericarp. Plant Physiol. Biochem. 28: 283-291. Nightingale, G. T. 1949. The use and value of plant log in pineapple production. PRI Seminar Summary, January. Private document, Pineapple Research Institute of Hawaii, Honolulu. Nimmo, H. G. 2000. The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends in Plant Sci. 5:75-80. Nobel, P. S. 1988. Environmental biology of agaves and cacti. Cambridge: Cambridge University Press. Nobel, P. S. and T. L. Hartsock. 1983. Relationships between photosynthetically active radition, nocturnal acid accumulation, and CO2 uptake for a crassulacean acid metabolism plant, Opumtia ficus-indica. Plant Physiol. 71:71-75. Nobiling, R. and H. D. Reiss. 1987. Quantitative analysis of calcium gradients and activity in growing pollen tubes of Lilium longiflorum. Protoplasma. 139:20-24. Osborne, D. J. and F. W. Went. 1953. Climatic factors in¯uencing partheno-carpy and normal fruit-set in tomato. Botanical Gazette. 114:312-322. Osmond, C. B. 1981. Crassulacean acid metabolism: a curiosity in context. Ann. Rev. Plant Physiol. 29:379-414. Ohad, I., N. Keren, H. Zer, H. Gong, T. S. Mor, A. Gal, S. Tal, and Y. Domovich. 1994. Light-induced degradation of the photosystemII reaction centre D1 protein in vivo: an integrative approach. pp. 161-177. In:N. R. Baker, J. R. Bowyer,(eds.)Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field. Bios Scientific, Oxford, UK. Park, I. K. and S. Tsunoda. 1979. Effect of low temperature on chloroplast structure in cultivars of rice. Plant & CellPhysiol. 20:1449-1453. Parkin, K. L. and S. J. Kuo. 1989. Chilling-induced lipid degradation incucumber (Cucumis sativa L. cv hybrid C) fruit. Plant Physiol. 90:1049-1056. Paull, R. E. 1993. Posthaverst handling of Smooth Cayenne pineapple in Hawaii for the fresh market. Acta Hort. 334:273-285. Paul, M. J., K. Loos, M. Stitt, and P. Ziegler. 1998. Starch-degrading enzymes during the induction of CAM in Mesembryanthemum crystallinum. Plant Cell Environ. 16:531-538. Paul, M. J., S. P. Driscoll and D. W. Lawlor. 1992. Sink-regulation of photosynthesis in relation to temperature in sunflower and rape. J. Exp. Bot. 43:147–153. Paull, R. E. 1993. Pineapple and papaya. pp.291-323. In:Biochemisty of Fruit Ripening. Eds. Seymour, G. B., J. E. Taylor, and A. Tucker. Chapman and Hall. London. Pierce, S., K. Winter, and H. Griffiths. 2002. The role of CAM in high rainfall cloud forests: an in situ comparison of photosynthetic pathways in Bromeliaceae. Plant Cell Enviro. 25:1181-1189. Pollock, C. J. and E. J. Lloyd. 1987. The effect of low temperature upon starch, sucrose and fructan synthesis in leaves. Ann. Bot. 60:231-235. Popp, M. H. P. Janett, Ul. Lüttge, and E. Medina. 2003. Metabolite gradients and carbohydrate translocation in rosette leaves of CAM and C3 bromeliads. New Phytologist. 157:649-656 Preiss, J. and C. Levi. 1980. Starch biosynthesis and degradation. Carbohydrates: Structure and Function, ed J. Preiss. Academic Press, New York. Biochemistry of Plants. 3:371-424. Py, C. 1958. La production d’ananas de November-December. Fruits. 13:105-110. Raison, J. K. and G. R. Orr. 1990. Proposals for a better understanding of the molecular basis of chilling injury. pp. 145-164. In:CY Wang, ed, Chilling Injury of Horticultural Crops. CRC Press, Boca Raton, FL, Ramos, M. J. M. 2006. Nutritional deficiency in ‘Imperial’ pineapple in the vegetative growth phase and leaf nutrient concentration. Acta Hort. 702:133-139. Rathore, K. S., R. J. Cork. And K. R. Robinson. 1990. Indo-1-measured Ca2+ gradient in growing pollen tubes of Lilium longiflorum. Plant Physiol. 93:389-397. Righetti, T. L. 1987. Using tissue mineral analysis in perennial crops. Rodriguez, A. G. 1932. Influence of smoke and ethylene on the fruiting of pineapple(Ananas sativus Shult.). J. Dep. Agric. P. R. 26:5-18. Ry, C. J., J. Lacoevilhe, and C. Teisson. 1987. The pineapple:cultivation and uses. G. P. Maisonneuve and Larose, Paris, France. Sage, R. F. and T. D. Sharky. 1987. The effect of temperature on the occurrence of oxygen and carbon dioxide insensitive photosynthesis in field grown plants. Plant Physiol. 84:658-664. Sakai-Wada, A. and S. Yagi. 1993. Ultrastructural studies on the Ca2+ localization in the dividing cells of the maize root tip. Cell Structure and Function(6):389-397. Saltveit, Jr., M. E. 1991 Prior temperature exposure affects subsequent chilling sensitivity. Physiol. Plant. 82:529-536. Sassenrath, G. F., D. R. Ort. and A. R. Jr. Portis. 1990. Impaired reductive activation of stromal bisphosphatases in tomato leaves following low-temperature exposure at high light. Arch. Biochem. Biophys. 282:302-308. Saunders, M. J. 1986. Correlation of electrical current influx with nuclear position and division in Funaria caulonema tip cell. Protoplasma. 132:32-37. Saunders, M. J. and K. J. Jones. 1988. Distribution of plant formation by the intercellular calcium antagonist TMB-8. Protoplasms. 144:92-100. Shear, C. B. and M. Faust. 1980. Nutrional ranges in deciduous tree fruits and nuts. Hort Rev. 2:142-163. Sideris, C. P. and B. H. Krauss. 1933. Physiological studies on the favtors influencing the quality of pineapple fruits. I. Physicochemical variations in the tissue of ripe pineapple fruits. Pineapple Quarterly. 3:82-114. Sideris, C. P. and B. H. Krauss 1938. Growth and development of the pineapple. Growth. 1:181. Sideris, C. P. and H. Y. Youno. 1945. Effects of potassium on chlorophyll, acidity, ascorbic acid and carbohydrates of Ananas comosus L. Merr. Plant Physiol..20:649-670. Sideris, C. P. and H. Y. Youno. 1947. Effects of potassium on the nitrogenous constituents of Ananas comosus L. Merr. Plant Physiol. 22:97-116. Siebke, K., S. von Caemmerer, M. Badger, and R. T. Furbank. 1997. Expressing an RbcS antisense gene in transgenic Flaveria bidentis leads to an increased quantum requirement for CO2 fixed in photosystems I and II. Plant Physiol..105:1163-1174. Singh, N. P. and C. B. S. Rajput. 1978. Effect of leaf age and position and fruiting status on guava leaf mineral composition. J. Hort. Sci. 53:73-74. Singleton, V. L. and W. A. Gortner. 1965 Chemical and physical development of pineapple fruit. II. Carbohydrate and acid constiyuents. J. Food Sci. 30:24-29. Smith, J. A. C., J. Ingram, M. S. Tsiantis, B. J. Barkla, D. M. Bartholomew, M. Bettey, O. Pantoja, and A. J. Pennington. 1996. Transport across the vacuolar membrane in CAM plant. In:Winter K, Smith JAC, eds. Crassulacean acid metabolism. Biochemistry, ecophysiology and evolution. Berlin:Springer-Verlag:53-71. Somersalo, S. and G. H. Krause 1989. Photoinhibition at chilling temperature, fluorescence characteristics of unhardened and cold acclimated spinach leaves. Planta.177:409–416. Stassen, P. J. C., B. H. P. J. van Vuuren, and S. J. Davie. 1997. Preliminary studies on macro-element utilization by hass avocado trees. South African Avocado Growers’ Association Yearbook. 20:68-73. Stewart, R. J., B. J. Sawyer, C. S. Bcheli, and S. P. Robinson. 2001. Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust. J. Plant Physiol. l28:181-191. Stewart, F. C. and G. Preston. 1941. Metabolic processes of potato discsunder conditionis conducive to salt accumulation. Plant Physiol. 15:23-62. Sthapit, B. R., J. R. Witcombe, and J. M. Wilson. 1995. Methods of selectionfor chilling tolerance in nepalese rice by chlorophyll fluorescence analysis. Crop Science. 35:90-94. Styring, S., I. Virgin, A. Ehrenberg, and B. Andersson. 1990. Strong light photoinhibition of electron transport in photosystem II. Impairment of the functions of the first quinone acceptor, QA. Biochim Biophys Acta. 1015: 269-278. Swete Kelly, D. E. 1993. Nutritional disorders. In:Broadley, R. H., R. C. Wassman, and E. R. Sinclair(eds)Pineapple Pests and Disorders. pp. 33-42. Department of Primary Industries, Brisbane, Queensland. Taiz, L. and E. Zeiger. 2002. Plant physiology. Sinauer Associates, pp:690. Inc., Sunderland. Tay, T. H. 1977. Fruit ripening studies on pineapple. MARDI Res. 4(2):29-34 Taylor, A.O. and A. S. Craig. 1971. Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol. 47:719-725. Taylor, A. O. and J. A. Rowley. 1971. Plants under climatic stress. I. Low temperature, high light effects on photosynthesis. Plant Physiol. 47:713-718. Terashima, I. and Y. Inoue. 1985. Vertical gradients in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol. 26:781-785. Thomashow, M. 1998 Role of cold-responsive genes in plant freezing tolerance. Plant Physiol. 117:1-7. Ting, S. V. and J. Attawy. 1971. Citrus fruits. pp. 107-111. In:The orange. Its biochemistry of fruits and their product Vol2. Ed. Hulme, A. C. Academic Press, New York. Tucker, G. A. 1993. Introduction, pp. 3-9. In:Seymour, G. B., J. E. Taylor, and G. A. Tucker(eds.)Biochemistry of Fruit Ripening. Chapman and Hall, London. Turnbul, C. G. N., R.J. Nissen, E.R Sinclair, and A.J. Shoter. 1993. Ethephon and cause of flowering failure in pineapple. Acta Hort. 334:83-92. Van Hasselt, P. 1974. Photo-oxidative damage to the ultrastructure of Cucumis chloroplasts during chilling. Proceedings Konikl Nederl Akademie Van Wetenschappen Amsterdam Series. 77 :50-56. Vass, I., S. Styring, T. Hundal, A. Koivuniemi, E. M. Aro, and B. Andersson 1992. Reversible and irreversible intermediates during photoinhibition of photosystem II. Stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci USA. 1102:195-201. Wagner, J. and W. Larcher.1981. Dependence of CO2 Gas Exchange and Acid Metabolism of the Alpine CAM Plant Sempervivum montanum on Temperature and Light*. Oecologia. 50:88-93. Wagner, W., F. Keller, and A. Wiemken. 1983. Fructan metabolism in cereals, induction in leaves and compartmentation in protoplasts and vacuoles. Zeitschrift fur Pflanzenphysiologie. 112:359-72. Wall, M. E. 1939. The role of potassium in plants. I. Effect of varying amounts of potassium on nitrogenous, carbohydrate, and mineralmetabolism in the tomato plant. Soil Sci. 47:143-161. Wall, M. E. 1940. The role of potassium in plants. II. Effect of varying amounts of potassium on the growth status and metabolism of tomato plants. Soil Sci. 49:315-331. Wall, M. E. 1940. The role of potassium in plants. III. Nitrogen and carbohydrate metabolism in potassium-deficient plants supplied with either nitrate or ammonium nitrogen. Soil Sci. 49:393-410. Wang, C. Y. 1982. Physiological and biochemical responses of plants to chilling stress. HortScience17:173-181. Wang, C. Y. and D. O. Adams. 1980. Ethylene production by chilled cucumber(Cucumis sativus L.). Plant Physiol. 66:841-843. Wang, C. Y. and D. O. Adams. 1982. Chilling-induced ethylene production in cucumbers(Cucumis sativus L.). Plant Physiol. 69:424-427. Wassman, R. C. 1990. Effects of seasonal temperature variations on pineapple scheduling for canning in Queensland. Acta Hort. 275:131-139. Wendt, W. A. 1936. Treatment of plants to expedite bud development. U. S. Pat. 2037203. Wee, Y. C. and A. N. Rao. 1979. Ananas pollen germination. Grana 18:33-39. Wee, Y. C. and J. C. Ng. 1968. Some observations on the effect of month og plan
摘要: 
台灣地區鳳梨產業為達全年可生產果實之目的,常在秋末冬初進行人工催花以調節產期,台灣地區冬季偶有低於10℃以下的低溫出現,本研究目的在探討‘台農17號’鳳梨催花後不同發育階段低溫處理後對於植株及果實的影響。
利用低溫(日溫12℃、夜溫3℃)3~5天,處理催花後不同發育階段的‘台農17號’鳳梨植株。植株於低溫處理下,夜間淨光合作用在、氣孔導度與淨二氧化碳交換量皆很低,僅在明期與暗期轉換時,因溫度的升高而有一波峰出現。植株在回溫後第二天,其淨光合作用、氣孔導度與淨二氧化碳交換量回復。催花後6、12及17天,植株經低溫處理後,葉綠素螢光參數Fo在低溫處理後會明顯上升;Fv/Fm、Fv/Fo與葉綠素含量則會下降,尤其在葉片寒害徵狀處葉綠素螢光參數與葉綠素含量近乎0,且葉片綠色部分的離子滲漏率會高於對照組。在光合產物方面,低溫處理後,葉片的可滴定酸會明顯高於對照組。葉片綠色部分的可溶性糖含量在低溫處理後明顯低於對照組,白色與莖頂部份兩處理無明顯差異,但於催花後葉片白色部分的可溶性糖含量會漸漸上升,而莖頂部份則漸漸下降。澱粉於各部位低溫處理後皆無明顯差異,但於莖頂澱粉含量在催花後會明顯上升。於低溫處理後,葉片綠色部分的乙烯釋放量與呼吸率皆高於對照組;莖頂部份的乙烯釋放量與呼吸率在催花後會明顯下降。
在植株大量及微量元素方面,在大量元素部分,低溫處理後葉片綠色及白色部分的鉀含量會略低於對照組,白色部份的鎂含量在低溫處理後會高於對照組,在葉片白色部分的全碳含量與碳氮比會明顯低於對照組低,其餘元素在低溫處理後皆無明顯差異。植株開花後葉片綠色部分的碳、氮、鈣與錳的含量會比未開花株高,而鉀與鐵在開花株中的含量比未開花株低;葉片白色部份,開花株中除了錳之外其餘含量皆較未開花株低;莖頂部份,開花株碳、鈣與錳含量較未開花株高,而磷、鐵、鋅與銅含量較未開花株低。
低溫處理後,電顯及切片觀察對於生長點細胞並未造成明顯外觀傷害,但對於葉片及開花結果情形有較大的影響。催花後第0天與第6天處理低溫後開花率最低,且果實果重及果目數最少,隨花芽發育漸成熟,對於低溫的傷害越小,但在果實外觀上出現木栓化的情形。低溫處理後的植株其果實轉色較慢,果肉顏色較白,全可溶性糖與澱粉含量也較低。大量元素方面各處理間無明顯差異,鋅在對照組中有較高含量,錳在對照組中含量最低。
於催花後0~17天期間,低溫處理的植株,葉片會出現許多褐斑,且光合產物下降,開花率明顯偏低,嚴重者導致植株死亡,果實大小、外觀及品質也會受到嚴重的影響。

In order to produce pineapple fruits year round in Taiwan, pineapple growers usually forced flowering in the late fall or winter to force the production of pineapple fruits by late spring or summer. The purpose of this study was to investigate the effects of low temperature upon the development of the ‘TN-17’ pineapple plants and fruits, during different time periods after forced flowering.
The ‘TN-17’ pineapple plants underwent an application of forced flowering. Next they were exposed to 12℃/8H, 3℃/16H for 3-5 day periods during different stages of their development, then the they allowed to grow to maturity. At the end of 50 days, photosynthesis, stoma conduction, and Net CO2 exchange were found to be very low, but throughout the experiment, during the dark to light period, they showed a peak. On the 6th、12thand 17th days after forced flowering, chlorophyll fluorescence parameter Fo value also showed a peak. However, in browning areas caused by chill injury, Fv/Fm, Fv/Fo, chlorophyll fluorescence parameter and chlorophyll content decreased to almost 0. Additionally, the green part of leaves suffered high membrane leakage. The components of photosynthesis that were measured after cold exposure at 3℃, were titratable acid, total soluble sugar, and starch. Titratable acid was increased. Total soluble sugar in the green part of leaves decreased while in the shoot apex and the white part of the pineapple plant there was no change. On the other hand, total soluble sugar increased in the white part but decreased in the shoot apex. As for starch content, there were no significant differences between the control and low tem perperature treatment, but the total trend in the shoot apex was that the starch content rose. Ethylene production, respiration rate, and mineral content were affected by low temperature treatment. Ethylene production and respiration rate showed no significant differences in the control, the white part, and the shoot apex, but increased slightly in the green part. However, the total trend of ethylene production and respiration rate was a decrease in the shoot apex. Minerals showed a decrease of K in the white and green part; an increase of Mg in the white part;a decrease in total carbon content and C/N; and no significant differences in all other minerals. Further results in mineral analysis were in the comparison of flowering and non-flowering plants. C、N、Ca and Mn were higher in flowering than in non-flowering. K and Fe was lower in flowering than non-flowering. Minerals in the white portion of flowering plants were lower than non-flowering except for Mn. C、Ca and Mn in the shoot apex of flowering plant were higher than non-flowering, but P、Fe、Zn and Cu were lower than the non-flowering. After low temperature treatment, there was no apparent physical injury to the shoot apex, but injury symptoms did show up in the resulting leaves and fruits. Those plants that were exposed to low temperature between 0-6th day after forced flowering showed the lowest flowering rate. The resulting number of fruitlets and fruit weight were also lower than at any other stages. Exposure to cold during the inflorescent stage damaged the young plants but resulted in higher cold tolerance in the maturing plants and fruits. However, there was some phellem-like growth on the skin of the fruit. After low temperature treatment, the color turning rate of the peel and pulp were slowly than the control. The total soluble sugar and starch was also lower, Zn content was lower, but the Mn content was higher. There were no significant differences in other minerals.
In conclusion, forced flowering and low temperature treatments resulted in the following: browning spots on the green part of leaves, decreased flowering rate, increased titratable acid, decreased total soluble sugar, and plant death in cases of serious cold injury. Low temperature had a serious affect on fruit weight, fruit appearance, and fruit quality.
URI: http://hdl.handle.net/11455/29067
其他識別: U0005-1308200917422200
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.