Please use this identifier to cite or link to this item:
標題: D型胺基酸氧化酵素基因(daao)作為甘藍之農桿菌基因轉殖法的篩選標誌基因之研究
Using D-Amino Acid Oxidase Gene (daao) as the Selectable Marker Gene for Cabbage (Brassica oleracea L. var. capitata L.) via Agrobacterium Mediated Transformation
作者: 李易輯
Lee, I-Chi
關鍵字: D-amino acid oxidase;D型胺基酸氧化酵素;selectable marker gene;cabbage;篩選標誌基因;甘藍
出版社: 園藝學系所
引用: 張隆武。1996。D-胺基酸氧化酵素基因、蘇力菌殺蟲晶體蛋白基因及抗凍蛋白基因轉移至甘藍與結球白菜之研究。國立中興大學園藝學研究所碩士論文。 劉程煒。2003。水稻農桿菌基因轉殖系統與甘藍及水稻葉綠體基因轉殖系統之建立及應用。國立中興大學園藝學研究所博士論文。 Bechtold, N., J. Ellis, and G. Pelletier. 1993. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Paris Life Sci. 316:1194-1199. Chang, S. S., S. K. Park, B. C. Kim, B. J. Kang, D. U. Kim, and H.G. Nam. 1994. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J. 5:551-558. Chung, M. H., M. K. Chen, S. M. Pan. 2000. Floral spray transformation can efficiently generate Arabidopsis transgenic plants. Transgenic Res. 9(6):471-476. Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16(6): 735-743. Dale, E. C. and D. W. Ow. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88: 10558-10562. Dale, E. C. and D. W. Ow. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. PNAS 88(23):10558-10562. Daley, M., V. C. Knauf, K. R. Summerfelt, and J. C. Turner. 1998. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 17: 489-496. Darbani, B., A. Eimanifar, C. N. Stewart, Jr, and W. N. Camargo. 2007. Methods to produce marker-free transgenic plants. Biotechnol. J. 2:83-90. De Block, M. and D. Debrouwer. 1991. Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257–263. Desfeux, C., S. J. Clough, and A. F. Bent. 2000. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123(3):895-904. Ebinuma, H. and A. Komamine. 2001. MAT (Multi-Auto-Transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cel. Dev. Biol. Plant 37:103-113. Ebinuma, H., K. Sugita, E. Matsunaga, and M. Yamakado. 1997. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc. Natl. Acad. Sci. USA 94: 2117-2121. Endo, S., T. Kasahara, K. Sugita, E. Matsunaga. and H. Ebinuma 2001. The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Reports 20:60–66. Erikson, O., M. Hertzberg, and T. Nasholm. 2004. A conditional marker gene allowing both positive and negative selection in plants. Nat. Biotechnology 22: 455-458. Erikson, O., M. Hertzberg, and T. Näsholm. 2005. The dsdA geng from Escherichia coli provides a novel selectable marker for plant transformation. Plant Molecular Biology 57:425-433. Feldmann, K. A. and M. D. Marks. 1987. Agrobacterium-mediated transformation of germination seeds of Arabidopsis thaliana: A non-tissue culture approach. Mol. Gen. Genet. 208:1-9. Gelvin, S. B. 2006. Agrobacterium transformation of Arabidopsis thaliana roots: a quantitative assay. Methods Mol Biol. 343:105-113. Gleave, A. P., D. S. Mitra, S. R. Mudge, and B. A. M. Morris. 1999. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol. Biol. 40: 223- 235. Goldsbrough, A. P., C. N. Lastrella, and J. I. Yoder. 1993. Transposition mediated re-positioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technology 11: 1286–1292. Haldrup, A., M. Noerremark, and F. T. Okkels. 2001. Plant selection principle based on xylose isomerase. In Vitro Cell Dev. Biol. Plant. 37:114-119. Hsiao, P., Sanjaya, R. C. Su, J. A. T. D. Silva, M. T. Chan. 2007. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta 225:897-906. Joersbo, M., I. Donaldson, J. Kreiberg, S. G. Petersen, J. Brunstedt, and F. T. Okkels. 1998. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4:111-117. Katavic, V., G. W. Haughn, D. Reed, M. Martin, and L. Kunst. 1994. in planta transformation of Arabidopsis thaliana. Mol. Gen. Genet. 245:363-370. Kohli, A., S. Griffiths, N. palacios, R. M. Twyman, P. Vain, D. A. Laurie, and P. Christou. 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17(6):591-601. Komari, T., Y. Hiei, Y. Saito, N. Murai, T. Kumashiro. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165–174. Konno, R. and Yasumura, Y. 1992. D-Amino acid oxidase and its physiological function. Int. J. Biochem. 24:519-524. Leyman, B., N. Avonce, M. Ramon, P. V. Dijck, G. Iturriaga, and J. M. Thevelein. 2006. Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J. Biotechnol. 121:309-317. Li, H. Q., P. J. Kang, M. L. Li, and M. R. Li. 2007. Genetic transformation of Torenia fournieri using the PMI/mannose selection system. Plant Cell Tiss. Organ. Cult. 90:103-109. Liu, F., M. Q. Cao, L. Yao, Y. Li, C. Robaglia, and C. Tourneur. 1998. in planta transformation of pakchoi (Brassica Campestris L. ssp. Chinensis) by infiltration of adult plants with Agrobacterium. Acta. Hort. 467:187-192. Lucca, P., X. Ye, I. Potrykus. 2001. Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol. Breed. 7:43-49. Mettler, Irvin J. 1987. A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol. Biol. Reporter 5:346-349. Miki, B. and S. McHugh. 2004. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107:193-232. Negrotto, D., M. Jolly, S. Beer, Wenck, A. R. and G. Hansen. 2000. The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep. 19:798-803. Okennedey, M. M., J. T. Burger, F. C. Botha. 2004. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep. 22:684-690. Perl A, O, Shaul, and G. Galili. 1992. Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts. Plant Mol Biol. 19(5):815-823. Rainer, D. M., P. Bottino, M. P. Gordon, and E. W. Nester, 1990. Agrobacterium- mediated transformation of rice(Oryza sativa L.). BioTechnology. 8:33-38. Reed, J., L. Privalle, M. L. Powell, M. Meghji, J. Dawson, E. Dunder, J. Sutthe, A. Wenck, K. Launis, C. Kramer, Y. F. Chang, G. Hansen, and M. Wright. 2001. Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev. Biol. Plant. 37:127-132. Rogers, S. G., H. Klee, M. Byren, R. B. Horsch, and R. T. Fraey. 1988. Improved vector for plant transformation: expression cassette vectors and new selectable marker. Method in Enzymology. Academic Press. Sentheshanmuganathan, S. and W. J. Nickerson. 1962. Transaminase and D-amino acid oxidase of Trigonopsis variabilis. J. gem. Microbiol. 27:465-471. Serizawa. N., K. Nakagawa, T. Haneishi, S. Kamimura, and A. Naito. 1980. Enzymatic conversion of cephamycin C by D-amino acid oxidase from Trigonopsis variabilis. J Antibiot 33(6):585-90. Sonntag, K., Y. Wang, and M. Wallbraun. 2004. A transformation method for obtaining marker-free plants based on phosphomannose isomerase. Acta Univ. Latviensis Biol. 676:223-226. Sugita, K., Matsunaga, E. and Ebinuma, H. 1999 Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Reports. 18:941-947. Szwajcer-Dey, E., J. R. Miller, S. Kovacevic and K. Mosbach. 1990. Characterization of a D-amino acid oxidase with high activity against cephalosporin C from the yeast from Trigonopsis variabilis. Biochem. International. 20: 1169-1178. Wright, M., J. Dawson, E. Dunder, J. Suttie, J. Reed, C. Kramer, Y. Chang, R. Novitzky, H. Wang, and L. Artim-moore. 2001. Efficient biolistic transformation of maize (Zea mays L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep. 20:429-436. You, S. J., C. H. Liau, H. E. Huang, T. Y. Feng, V. Prasad, H. H. Hsiao, J.-C. Lu, and M. T. Chan. 2003. Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217:60-65. Zhang, X., R. Henriques, S. S. Lin, Q. W. Niu. And N. H. Chua. 2006. Agrobacterium- mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 1(2): 641-646.
隨著基因改造作物的廣泛種植,其對人類建康及環境生態的衝擊,也廣受到社會大眾關著。目前被廣泛應用於轉殖作物篩選上的抗抗生素及抗除草劑標誌基因,將面臨減少或無法使用,因此對非抗抗生素基因的篩選標誌基因的需求,是具必要性及急迫性。大部份D型組態的胺基酸,不能被植物代謝,且對植物產生毒害。D型胺基酸氧化酵素(D-amino acid oxidase, DAAO)可以催化D型胺基酸的脫氨氧化反應(oxidative deamination)。本研究探討利用daao基因作為轉殖植物篩選標誌基因之應用潛力。本研究之目的為:(一)、建立以 daao 基因作為甘藍之農桿菌基因轉殖法的篩選標誌基因系統,(二)、比較daao基因及nptII基因作為甘藍之農桿菌基因轉殖法的篩選標誌基因之優劣。
本研究已完成將篩選自三角酵母(Trigonopsis variabilis)中的daao基因及nptII基因為標誌基因,以gus及egfp為目標基因,利用農桿菌轉移法將pCaPDAO-gus、pCaPDAO-egfp、pRPDAO-gus、pRPDAO-egfp等質體之上述基因轉移到`初秋´甘藍下胚軸。經D-alanine 或kanamycin篩選並誘導、再生成植株。轉殖植株以PCR分析之結果顯示,daao及nptII等篩選標誌基因已存在於轉殖甘藍之基因組中。GFP綠色螢光及GUS活性染色分析的結果顯示egfp及gus等目標基因可在轉殖甘藍中分別表現綠色螢光及藍色反應。

Resistance to antibiotics mediated by selectable marker genes remains a powerful selection tool for transgenic event production. However, the presence of antibiotic resistance genes in genetically engineered crops has generated a number of environmental and consumer concerns for long time. Most of the amino acids found in nature are of the L-type. Hence, eukaryotic proteins are always composed of L-amino acids although D-amino acids are found in bacterial cell walls and in some peptide antibiotics. Some D-amino acids were very toxic to plants (e.g., D-alanine and D-methionine), while others had slight negative effects, and still others had no effect at all. One of the best known enzymatic pathways for metabolism of D-amino acid is via oxidative deamination by D-amino acid oxidase (encoded by the daao gene). In this study, the possibilities of using D-amino acid oxidase genes as selection marker genes in cabbage transformation are studied. The objectives of this study are to establish the system of daao gene as the selectable marker for cabbage transformation via Agrobacterium, and to compare the efficiency of nptII (neomycin phosphotransferase II) and daao genes as the selectable marker.
The daao cloned from the yeast (Trigonopsis variabilis), nptII, gus and egfp genes were transfer into the hypocotyl of cabbage via Agrobacterium mediated transformation. The regenerated plantlets were selected by D-alanine or kanamycin. The results of PCR analysis indicated that daao and nptII genes were presented in the genome of transformed cabbage plants. GFP fluorescence and Gus histochemical staining analyses showed the emission of green fluorescence and blue-color reaction were presented in the egfp or gus gene transformed cabbage plants, respectively.
Our results indicated that the system of using daao gene as selection marker, which has several advantages over the conventional used nptII, offers new possibilities for non-antibiotics selectable marker in commercially important crops.
其他識別: U0005-1708200916515600
Appears in Collections:園藝學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.