Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2910
DC FieldValueLanguage
dc.contributor沈君洋zh_TW
dc.contributorJung-Yang San 沈君洋en_US
dc.contributor.author鄭鼎偉zh_TW
dc.contributor.authorZheng, Ding-Weien_US
dc.contributor.other機械工程學系所zh_TW
dc.date2012en_US
dc.date.accessioned2014-06-05T11:44:18Z-
dc.date.available2014-06-05T11:44:18Z-
dc.identifierU0005-0711201215303200en_US
dc.identifier.citation[1] R.J.H. Grisel , S.F. Smeding, R.d. Boer,“ Waste heat driven silica gel/water adsorption cooling in trigeneration”, Applied Thermal Engineering, Vol. 30, pp. 1039–1046, 2010. [2] W.S. Loh , I.I. El-Sharkawy , K.C. Ng , B.B. Saha ,“Adsorption cooling cycles for alternative adsorbent/adsorbate pairs working at partial vacuum and pressurized conditions”, Applied Thermal Engineering, Vol. 29, pp. 793–798, 2009. [3] Y. Hirota , Y. Sugiyama , M. Kubota , F. Watanabe ,N. Kobayashi , M.Hasatani,M.Kanamori,“Development of a suction-pump-assisted thermal and electrical hybrid adsorption heat pump”, Applied Thermal Engineering, Vol. 28,pp. 1687–1693, 2008. [4] J.Y. San , W.M. Lin,“Comparison among three adsorption pairs for using as the working substances in a multi-bed adsorption heat pump”, Applied Thermal Engineering, Vol.28,pp. 988–997, 2008. [5] T. Nunez , W. Mittelbach , H.M. Henning ,“Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications”, Applied Thermal Engineering, Vol. 27,pp.2205-2212, 2007. [6] T. Miyazaki , A. Akisawa,“The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers”, Applied Thermal Engineering, Vol. 29,pp. 2708–2717, 2009. [7] M. Kubota , T. Ueda , R. Fujisawa , J. Kobayashi , Fujio Watanabe , Noriyuki Kobayashi , Masanobu Hasatani ,“Cooling output performance of a prototype adsorption heat pump with fin-type silica gel tube module”, Applied Thermal Engineering, Vol. 28,pp. 87-93, 2008. [8] B.N. Okunev , A.P Gromov , V.L. Zelenko , I.S. Glaznev , D.S. Ovoshchnikov , L.I Heifets ,“Effect of residual gas on the dynamics of water adsorption under isobaric stages of adsorption heat pump : Mathematical modeling”, International Journal of Heat and Mass Transfer, Vol. 53,pp.1283-1289, 2010. [9] R.Z. Wang , Z.Z. Xia , L.W. Wang , Z.S. Lu , S.L. Li , T.X. Li , J.Y. Wu , S. He ,“Heat transfer design in adsorption refrigeration systems for efficient use of low-grade thermal energy”, Energy, Vol. 36,pp.5425-5439, 2011. [10] Z. Xia , D. Wang , J. Zhang ,“Experimental study on improved two-bed silica gel–water adsorption chiller”, Energy Conversion and Management , Vol.49,pp.1469-1479, 2008. [11] D.C. Wang , J.Y. Wu , Z.Z. Xia , H. Zhai , R.Z. Wang , W.D. Dou ,“Study of a novel silica gel–water adsorption Chiller.Part II. Experimental study”, International Journal of Refrigeration, Vol.28,pp1084-1091, 2005. [12] X. Wang , H.T. Chua , K.C. Ng ,“Experimental investigation of silica gel-water adsorption chillers with and without a passive heat recovery scheme”, International Journal of Refrigeration, Vol.28,pp756-765, 2005. [13] 林永宸,一個具四個吸附器之吸附式熱泵之分析與測試,碩士論文,中興大學機械系,2009.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2910-
dc.description.abstract本研究藉由實驗量測來探討一個具四個鰭管式吸附器之熱泵之冷卻能力(SCP)與性能係數(COP)。研究中所使用之吸附劑為矽膠,冷媒為水,系統在分別考慮兩種不同裝置情形下,以進行性能測試。測試之結果顯示,於蒸發器內未裝置循環泵浦之情況下,最佳操作之週期時間為32分鐘,此時熱泵之最大SCP值為70.6 W/kg-矽膠,而所對應之COP值為0.65;在蒸發器內裝置循環泵浦之情況下,此時最佳操作之週期時間縮短為20分鐘,而最大SCP值為75.2 W/kg-矽膠,所對應之COP值則為0.53,兩者相比較下,後者之SCP值可提昇6.52 %,但COP值則會因而降低。在此實驗之過程中亦發現,蒸發器中之銅管長度可能不夠,飛濺之水滴有流入吸附器之跡象,同時冷凝器中之冷凝效果亦有不足之現象,此三個原因可能致使整個熱泵系統之性能亦隨之受限。zh_TW
dc.description.abstractThis work experimentally investigated the specific cooling power (SCP) and coefficient of performance (COP) of a newly developed adsorption heat pump containing four fin-tube adsorbers. The adsorption pair were silica gel and water. In the experiment, two different operating conditions were considered. The result shows that, for the operation without a water circulation pump in the evaporator, the optimal cycle time is 32 minutes. The maximum SCP value is 70.6 W/kg-silica gel and corresponding COP value is 0.65;For the operation with a circulation pump, the optimal cycle time reduces to 20 minutes. The maximum SCP value is 75.2 W/kg-silica gel and corresponding COP value is 0.53. Installing the circulation pump results in a 6.52% increase in the maximum SCP value, but the COP value is decreased. The experiment result also reveals that the length of the copper tube in the evaporator maybe too short. Liquid water droplet might directly flow into the adsorber. In addition, the condensation performance of the condenser is not as expected. These three reasons might affect the performance of the adsorption heat pump.en_US
dc.description.tableofcontents摘要........................................................................................................... i ABSTRACT.............................................................................................. ii 致謝.......................................................................................................... iii 目錄.......................................................................................................... iv 表目錄...................................................................................................... vi 圖目錄.................................................................................................... viii 符號說明.................................................................................................. xi 第一章 緒論...................................................................................... 1 1-1 前言............................................................................. 1 1-2 文獻回顧..................................................................... 3 1-3 研究目的.................................................................... 11 第二章 系統之操作流程與性能參數............................................. 12 2-1 系統之介紹.............................................................. 12 2-2 非等模式時間之操作.............................................. 13 2-3 熱泵之加熱量與冷卻量.......................................... 15 第三章 實驗設備與量測過程......................................................... 19 3-1 實驗目的.................................................................. 19 3-2 實驗設備之介紹...................................................... 19 3-3 實驗程序.................................................................. 21 第四章 實驗結果與討論................................................................ 24 4-1 溫度與蒸氣壓力之量測結果................................... 24 4-1-1 蒸發器中未加裝冷媒循環泵浦之溫度量測.25 4-1-2 蒸發器中加裝冷媒循環泵浦之溫度量測.... 27 4-1-3 吸附器中水蒸氣壓力之量測........................ 29 4-2 熱泵之SCP與COP值............................................. 32 4-3未加裝/加裝 循環泵浦之實驗結果比較.................. 35 第五章 結論..................................................................................... 36 5-1 結論............................................................................ 36 5-2 未來系統改良之建議................................................ 39 參考文獻................................................................................................. 40 表2.1熱泵之加熱量、釋熱量與冷卻量.............................................. 44 表4.1 下之溫度量測結果 (Cycle Time = 20min) ……………………………………………………………………......... 45 表4.2 下之溫度量測結果 (Cycle Time = 24 min) ………………………………………………………………………... 46 表4.3 下之溫度量測結果 (Cycle Time = 28 min) ………………………………………………………………………... 47 表4.4 下之溫度量測結果 (Cycle Time = 32 min) ………………………………………………………………………... 49 表4.5 下之溫度量測結果 (Cycle Time = 36 min) ………………………………………………………………………... 51 表4.6 下之溫度量測結果 (Cycle Time = 16 min) ………………………………………………………………………... 53 表4.7 下之溫度量測結果 (Cycle Time = 20 min) ………………………………………………………………………... 54 表4.8 下之溫度量測結果 (Cycle Time = 24 min) ……………………………………………………………………....... 55 表4.9 下之溫度量測結果 (Cycle Time = 28 min) ………………………………………………………………………... 56 表4.10 下之溫度量測結果 (Cycle Time = 32 min) ………………………………………………………………………... 58 表4.11 未加裝循環泵浦時之實驗結果................................................ 60 表4.12 加裝循環泵浦時之實驗結果.................................................... 61 表4.13 裝置冷煤循環泵浦後,熱泵系統在各週期時間操作下,冰水之入出口平均溫度與蒸發溫度............................................................ 62 圖2.1 非等模式下之週期操作循環圖................................................. 63 圖2.2 熱泵中冷媒與冰水之流動,熱電偶裝置之位置..................... 64 圖2.3 吸附器中冷/熱水之流動控制與熱電偶裝置之位置................ 65 圖3.1 吸附式熱泵系統組裝完成圖..................................................... 66 圖4.1(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 20 min, )........................ 67 圖4.1(b) 冷卻水出冷凝器時之溫度變化與冰水水槽之溫度變化 (Cycle Time = 20 min, ) ....................... 68 圖4.2(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 24 min, ) ....................... 69 圖4.2(b) 冷卻水出冷凝器時之溫度變化與冰水水槽之溫度變化 (Cycle Time = 24 min, ) ....................... 70 圖4.3(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 28 min, ) ..................... 71 圖4.3(b) 冷卻水出冷凝器時之溫度變化與冰水水槽之溫度變化 (Cycle Time = 28 min, ) ....................... 72 圖4.4(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 32 min, ) ..................... 73 圖4.4(b) 冷卻水出冷凝器時之溫度變化與冰水水槽之溫度變化 (Cycle Time = 32 min, ) ....................... 74 圖4.5(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 36 min, ) ..................... 75 圖4.5(b) 冷卻水出冷凝器時之溫度變化與冰水水槽之溫度變化 (Cycle Time = 36 min, ) ....................... 76 圖4.6(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 16 min, ) ........................... 77 圖 4.6(b) 冷卻水入出系統之水溫變化與熱水水槽溫度、蒸發溫度 (Cycle Time = 16 min, ) ......................... 78 圖4.7(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 20 min, ) ........................... 79 圖 4.7(b) 冷卻水入出系統之水溫變化與熱水水槽溫度、蒸發溫度 (Cycle Time = 20 min, ) ......................... 80 圖4.8(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 24 min, ) ............................ 81 圖 4.8(b) 冷卻水入出系統之水溫變化與熱水水槽溫度、蒸發溫度 (Cycle Time = 24 min, ) ......................... 82 圖4.9(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 28 min, ) ........................ 83 圖 4.9(b) 冷卻水入出系統之水溫變化與熱水水槽溫度、蒸發溫度 (Cycle Time = 28 min, ) ......................... 84 圖4.10(a) 吸附器之入出口水溫變化與冰水入出蒸發器之水溫變化 (Cycle Time = 32 min, ) ....................... 85 圖 4.10(b) 冷卻水入出系統之水溫變化與熱水水槽溫度、蒸發溫度 (Cycle Time = 32 min, ) ........................ 86 圖 4.11 吸附器中冷媒之蒸氣壓力變化 (Cycle Time = 16 min, ) ............................ 87 圖 4.12 吸附器中冷媒之蒸氣壓力變化 (Cycle Time = 20 min , ) .......................... 88 圖 4.13 吸附器中冷媒之蒸氣壓力變化 (Cycle Time = 24 min , ) .......................... 89 圖 4.14 吸附器中冷媒之蒸氣壓力變化 (Cycle Time = 28 min , ) .......................... 90 圖 4.15 吸附器中冷媒之蒸氣壓力變化 (Cycle Time = 32 min , ) .......................... 91zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0711201215303200en_US
dc.subject吸附式熱泵zh_TW
dc.subjectadsorption heat pumpen_US
dc.subject冷卻能力zh_TW
dc.subject性能係數zh_TW
dc.subject矽膠zh_TW
dc.subjectspecific cooling poweren_US
dc.subjectCOPen_US
dc.subjectsilica gelen_US
dc.title蒸發器內冷媒之循環對一個吸附式熱泵之冷卻性能之影響zh_TW
dc.titleEffect of refrigerant recirculation on cooling performance of an adsorption heat pumpen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.