Please use this identifier to cite or link to this item:
標題: 薄膜改良對全釩氧化還原電池性能改善之實驗探討
Experimental Study on the Vanadium Redox Flow Battery Performance Improvement with Modified Membranes
作者: 劉柏彥
Liu, Po-Yen
關鍵字: 全釩氧化還原液流電池;vandadium redox flow battery (VRFB);薄膜改質;自放電;電容量;能量效率;modified membrane;self-discharge;electric capacity;energy efficiency.
出版社: 機械工程學系所
引用: [1] 國立中央大學能源教育知識網. [2] R. Ahuja, J. Blomqvist, P. Larsson, P. Pyykko, P. Zaleski-Ejgierd. Relativity and the lead-acid battery. Physical Review Letter 106 (2011) 018301. [3] M. Rahman, J. Wang, X. Deng, Y. Li, H. Liu. Hydrothermal synthesis of nanostructured Co3O4 materials under pulsed magnetic field and with an aging technique, and their electrochemical performance as anode for lithium-ion battery. Electrochimica Acta 55 (2009) 504-510. [4] Y.H. Pan, V. Srinivasan, C.Y. Wang. An experimental and modeling study of isothermal charge/discharge behavior of commercial Ni–MH cells. J. Power Sources 112 (2002) 298-306. [5] L.H. Thaller. Electrally rechargeable redox flow cell. United States Patent 19 (1976) 3996064. [6] E. Sun, M. Rychcik, M. Skyllas-Kazacos. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J. Power Sources 15 (1985) 179-185. [7] C. Jia, J. Liu, C. Yan. A significantly improved membrane for vanadium redox flow battery. J. Power Sources 195 (2010) 4380–4383. [8] X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery. J. Power Sources 189 (2009) 1240–1246. [9] S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li , J. Liu, Z. Yang, M.A. Hickner. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries. Electrochemistry Communications 12 (2010) 1650–1653. [10] Q. Luo, H. Zhang, J. Chena, P. Qian, Y. Zhai. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. J. Membrane Science 311 (2008) 98–103. [11] X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, L. Chen. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery. J. Membrane 341 (2009) 149-154. [12] C. Jia, J. Liu, C. Yan. A multilayered membrane for vanadium redox flow battery. J. Power Sources 203 (2012) 190– 194. [13] J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, X. Qiu. Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J. Materials Chemistry 18 (2008) 1232-1238. [14] J. Xi, Z. Wu, X. Qiu, L. Chen. Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J. Power Sources 166 (2007) 531–536. [15] F. Rahman, M. Skyllas-Kazacos. Vanadium redox battery: positive half-cell electrolyte studies. J. Power Sources 189 (2009) 1212–1219. [16] Q.M. Huang, Q.L. Zhang, H.L. Huang, W.S. Li, Y.J. Huang, J.L. Luo. Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline. J. Power Sources 184 (2008) 338–343. [17] Z. Gonzalez, A. Sanchez, C. Blanco, M. Granda, R. Menendez, R. Santamaria. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochemistry Communications 13 (2011) 1379–1382. [18]C. Ponce de Le’on, A. Fr’ıas-Ferrer, J. Gonz’alez-Garc’ıa, D.A. Sz’anto, F.C. Walsh. Redox flow cells for energy conversion. J. Power Sources 160 (2006) 716–732. [19] D. Xing, S. Zhang, C. Yin, B. Zhang, X. Jian. Effect of amination agent on the properties of quaternized poly(phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery applucation. J. Membrane Science 354 (2010) 68–73. [20] K.W. Knehr, E.C. Kumbur. Open circuit voltage of vanadium redox flow batteries: Discrepancy between models and experiments. Electrochemistry Communications 13 (2011) 342–345. [21] N. Zhu, X. hen, T. Zhang, P. Wu, P. Li, J. Wu. Improved performance of membrane free single-chamber air-cathode microbialfuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresource Technology 102 (2011) 422–426. [22] C. Sun, J. Chen, H. Zhang, X. Han, Q. Luo. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 195 (2010) 890-897. [23] D. Aaron, Z. Tang, A.B. Papandrew, T.A. Zawodzinski. Polarization curve analysis of all-vanadium redox flow batteries. J. Applied Electrochemistry (2011) 41:1175-1182. [24] D. You, H. Zhang, C. Sun, X. Ma. Simulation of the self-discharge process in vanadium redox flow battery. J. Power Sources 196 (2011) 1578–1585. [25] E. Kjeang, B.T. Proctor, A.G. Brolo, D.A. Harrington, N. Djilali, D. Sinton. High-performance microfluidic vanadium redox fuel cell. Electrochimica Acta 52 (2007) 4942–4946. [26] L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, Z. Yang. A Stable vanadium redox-flow battery with High energy density for large-scale energy storage. Advanced Energy Materials 1 (2011) 394-400. [27] 鄭華生. 分析化學. 清大出版社 (2007). [28] 童倉農. 儀器分析. 國興出版社 (1999). [29] 吳政益. 電解液靈動型態對全釩氧化還原電池效能影響之實驗探討. 碩士論文. 中興大學機械工程學系 (2011). [30] 龔盈瑝. 電解液與碳氈改良對全釩氧化還原電池性能改善之實驗探討. 碩士論文. 中興大學機械工程學系 (2012).
本文為以薄膜改質探討其對全釩氧化還原液流電池(Vanadium Redox Flow Battery, VRFB)性能之改善。本研究以不同改質的離子交換膜測量不同價數的釩離子擴散係數,發現在三價或四價釩離子擴散實驗中Nafion/Organically膜均有著最小的擴散係數,再利用開路電壓(Open-Circuit Voltage, OCV)方式,測量電池自放電率,由實驗結果可得使用Nafion/Organically膜有最佳的開路電壓效能。
本研究利用多次循環充放電實驗,來了解在實際電池操作之特性,在電流密度為20mA/cm2、40mA/cm2和60 mA/cm2下,探討電容量、電壓效率、庫倫效率和能量效率。實驗結果顯示使用Nafion/Polyaniline膜的電池在電流密度為20mA/cm2下擁有著最高的能量效率。隨著電流密度上升,同時增加了庫倫效率及趨緩電容量下降的趨勢,但相對地能量效率卻會略微降低,是因為電流密度上升,一小部分能量會轉為熱能而散失掉,無法將全部的電能傳遞至電池。

In this study, performance of vanadium redox flow battery (VRFB) was experimentally investigated with modified ion exchange membranes. The ion exchange membrane was modified based on Nafion 117. Nafion 117 soaked with H2O2 solution (Nafion/Pretreated), filled with SiO2 nanoparticles (Nafion/SiO2), composed with silicate hybrids (Nafion/Organically), and composed with polyaniline electrochemically (Nafion/Polyaniline), were prepared and used as the ion exchange membrane for the VRFB test. The performance of VFRB with modified membranes was characterized by the vanadium ion diffusivity, self-discharge capability, energy efficiency, electric capacity, and volume change of electrolytes .
Based on the experimental results, it was found that VRFB performance was enhanced using the modified membranes as compared with that using the Nafion as purchased. The experimental results also showed that VRFB with Nafion/Organically membrane has the lowest vanadium diffusivity, longest time maintaining at high voltage during the self-discharge process, and slowest electric capacity decay among all the membranes prepared in this study. However, the VRFB with Nafion/Polyaniline membrane produces the best energy efficiency because of higher coulombic efficiency due to higher electric conductivity. The experimental results suggested that higher energy efficiency can be obtained when VRFB operated at lower electric current densities.
其他識別: U0005-2408201319042500
Appears in Collections:機械工程學系所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.