Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2916
標題: 超音波振動輔助刀把之研究
A study of the oscillating tool for ultrasonic vibration assisted spindle
作者: 蘇旻彥
Su, Min-Yen
關鍵字: 超音波振動輔助;ultrasonic vibration assisted;變幅桿;horn
出版社: 機械工程學系所
引用: [1] R. W. Wood, Loomis, "The physical and biological effects of highfrequency sound-waves of great intensity, " Philosophical Magazine Ser. 7 (1927) 417–436 [2] J. O. Farrer, "Improvements in or relating to cutting, grinding, polishing, cleaning, honing, or the like, " UK Patent, no. 602801, 1948 [3] L. Balamuth, Sunnyside, A. Kuris and Bronx, "Vibratoty machine tool, " US Patent, no.2792674,1957 [4] L. D. Rozenberg, V. F. Kazantsev, L. O. Makarov ,and D. F. Yakhimovich, "Ultrasonic Cutting, " Consultants Bureau, New York, pp. 80-85,1964 [5] I. A. Markov, "Machining of Intractable Materials with Ultrasonic and Sonic Vibrations, " Illife Books, London, 1966 [6] L. Balamuth, "Ultrasonic rotary drive may open up many new applications for micro-devices," Electronics, Vol. 36, no. 2, 1963, pp.63. [7] P. Legge ,"Machining without abrasive slurry," Ultrasonics, Vol. 2, 1966, pp. 157-162. [8] T. B. Thoe, D. K. Aspinwall, M. L. H. Wise, "Review on ultrasonic machining," International Journal of Machine Tools and Manufacture﹐Vol. 38, Issue 4, March 1998, pp. 239–255 [9] H. Weber, J. Herberger, R. Pilz, "Truning of machinable glass ceramics with an ultrasonically viberated tool, "Annals of the CIRP, Vol. 33, No. 1, 1984, pp. 85-87 [10] T. Moriwaki and E. Shamoto, "Ultraprecision diamond turning of stainless steel by applying ultrasonic vibration, " Annals of the CIRP, Vol. 40, Issue 1, 1991, pp. 559–562 [11] T. Moriwaki, E. Shamoto and K. Inoue, "Ultraprecision ductile cutting of glass by applying ultrasonic vibration, " CIRP Annals - Manufacturing Technology, Vol.41, n1, 1992, pp. 141- 144 [12] T. Moriwaki, E. Shamoto, "Ultrasonic elliptical vibration cutting," CIRP Annals - Manufacturing Technology, Vol.44,n1,1995,pp.31-34 [13] M. Jin, M. Murakawa, "development of a practical ultrasonic vibration cutting tool system, " Journal of Materials Processing Technology, Vol. 113, 2001, pp. 342-347 [14] E. Shamoto, N. Suzuki, E. Tsuchiya, Y. Hori, H. Inagaki, K. Yoshino, "Development of 3 DOF Ultrasonic Vibration Tool for Elliptical Vibration Cutting of Sculptured Surfaces, " CIRP Annals - Manufacturing Technology, Vol. 54, Issue 1, 2005, pp. 321–324 [15] X. Li, D. Zhang, "Ultrasonic elliptical vibration transducer driven by single actuator and its application in precision cutting, " Journal of Materials Processing Technology ,Vol. 180, Issues 1–3, 1 December 2006, pp. 91–95 [16] D. E. Brehl, T. A. Dow, "Review of vibration-assisted machining," Precision Engineering ,Vol. 32, Issue 3, July 2008, pp.153–172 [17] Junichiro KUMABE ,Tatuo SOUTOME, Yuji NISHIMOTO, "Ultrasonic super-position vibration cutting of ceramics, " Journal of the Japan Society for Precision Engineering, Vol.52, NO.11 , 1986 , pp.1851-1857 [18] Z. J. Pei, P. M. Ferreira, S. G. Kapoor and M. Haselkorn, "Rotary Ultrasonic machining for face milling of ceramics," International Journal of Machine Tools and Manufacture, Vol. 35, no. 7, 1995, pp.1033-1046. [19] 鄭書友,“旋轉超聲機床的研制及實驗研究”,華僑大學機械製造及自動化工程研究所博士論文,2008 [20] K. L. Kuo, "Design of rotary ultrasonic milling tool using FEM simulation, " Journal of Materials Processing Technology,Vol. 201, 2008 , pp. 48–52 [21] U. Heisel, J. Wallaschek, R. Eisseler, C. Potthast , "Ultrasonic deep hole drilling in electrolytic copper ECu 57," CIRP Annals - Manufacturing Technology,Vol. 57, Issue 1, 2008, pp. 53–56 [22] 鄭湧誠,“感應電能傳輸技術運用於超音波振動輔助切削工具之開發”, 國立中正大學機械工程研究所碩士論文,2011 [23] 郭昱辰,“刀具參數對於超音波振動輔助切削刀把動態特性變化之研究”, 國立中興大學機械工程學所碩士論文,2012 [24] L. Domm, S. Sherrit, and Y. Bar-Cohen, "Development of a Piezoelectric Rotary Hammer Drill," NASA USRP -Internship Final Report, 2011 [25] 賴耿陽,超音波工學理論及實務,復漢出版社,2001 [26] 李祥林,"振動切削及其在機械加工中的應用," 北京科學技術出版社,1985 [27] D. Y. Zhang, X. J. Feng, L. J. Wang, D. C. Chen , "Study on the drill skidding motion in ultrasonic vibration microdrilling," International Journal of Machine Tools & Manufacture,Vol.34 ,No.6 , 1994, pp.847-857 [28] 吳朗,電子陶瓷:壓電陶瓷,全欣資訊圖書股份有限公司,1994 [29] http://www.physikinstrumente.com/tutorial/4_45.html [30] 賴耿陽譯,超音波工學,復文書局,2005 [31] 林仲茂,聲變幅桿的原理和設計,北京:科學出版社,1987
摘要: 
變幅桿是超音波振動輔助加工系統中一個關鍵的部分,但其具有非常多種外形來對應到各種不同應用場合,如何選擇並設計出一個易於加工,不隨工具變換而改變其特性,以及能符合加工振幅需求的變幅桿,在超音波振動輔助加工中是一個重要的課題。本研究目的是設計一振動刀把,其此刀把中的變幅桿可實際與振動子及工具結合,並有效提升工具端振幅,此外應設法減少刀把整體重量,以及減短刀把長度來提高抗彎曲能力。
本文選用最易於設計與加工的圓錐形變幅桿,以及採用1/4波長的構型,使刀把整體長度降低(Type A),此外為了進一步提升工具振幅,又另外提出一種以前述1/4波長圓錐形變幅桿為基礎,可搭配Langevin振動子的1/2波長構型兩階段變幅桿(Type B),另嘗試將兩階段變幅桿的輸入段,改以較輕的6061鋁製作,來達到降低1/2波長兩階段前後不同材質變幅桿(Type C)的整體重量,共三種構型。先以理論計算,再藉由有限元素軟體ANSYS模擬來進行變幅桿的設計,最後將其製作出來以實驗方式驗證;此外藉由更換不同重量、長度以及懸伸量的圓棒,探討擁有不同構型變幅桿的刀把,在工具變動時的共振頻率飄移與振幅改變量。
由實驗可得,1/4波長圓錐形變幅桿(Type A),搭配長34mm的 SKD11圓棒,在功率30.6W共振頻率27.5 kHz時工具端有10.4μm的振幅,與模擬的共振頻率27.8kHz僅有不到1%的誤差;而1/2波長兩階段變幅桿(Type B)搭配相同條件的圓棒下,在功率30.8W共振頻率28 kHz時工具端有17μm的振幅,共振頻率略小於模擬結果28.4kHz,誤差約為1.3%,在改變工具重量、長度以及懸伸量,其共振頻率的變化皆在400Hz以內,振幅變化幅度在1μm以下。
本文中提出的變幅桿構型,在工具變動時可有較小的共振頻率變化量,觀察功率與振幅的關係,可發現在相同功率時,採用1/2波長兩階段變幅桿(Type B)的振幅約為1/4波長變幅桿(Type A)的1.5倍。因此如果需求刀把重量輕,整體長度短,應選擇1/4波長變幅桿構型的刀把(Type A),而如果需要工具端面有更大的振幅,則可選擇採用1/2波長兩階段變幅桿(Type B)。

The horn is the key part of ultrasonic vibration assisted machining system, it has a lot of configuration to various application, how to choose and design a product that east processing, its characteristic does not change due to change of tool, it can accord with the needs of the processing amplitude of the horn, it to become an important issue in the ultrasonic vibration assisted machining. The purpose of this study is to design a oscillating tool, the horn can actually be combined with the transducer and tools, and it will enhance the tool end amplitude effective. It should be managed to reduce its quality, and lower front end portion by it flange length to increase bending resistance.
This study selects the conical-type horn which is the easiest to design and machining , and adopt ¼ wavelength of configuration which can reduce the overall length of the tool holder. In order to further enhance the tool’s amplitude, designing a ½ wavelength two-step horn based on ¼ wavelength conical-type horn, it can be combined with Langevin transducer, another attempt to change the two-stage horn’s material for lighting the whole weight, letting ½ wavelength two-step horn’s back section be substituted for 6061 aluminum, there are three configuration totally. First with theory calculations, and then by the finite element software ANSYS simulations for horn’s design. Finally, producing the horn and comparing the experiment results and simulations results. In addition, through the replacement of different weight, length and overhang of the rod, explore different configurations of the horn, changes in the tool’s resonant frequency drift and amplitude change amount.
According to the experiment, the amplitude of the ¼ wavelength conical horn with a 34mm rod of SKD11 is 10.4μm at the resonance frequency 27.5 kHz and power 30.6W. The resonant frequency between finite element analysis and experiment is under 1%; the amplitude of the ½ wavelength two-step horn with the same rod of SKD11 is 17μm at the resonance frequency 27.5 kHz and power 30.8W. The resonant frequency between finite element analysis and experiment is under 1.3%. The resonant frequency shift are less than 400 Hz and the tools’ amplitude change are all below 1μm when changing tools’ weight, length and overhang .
The horn configuration that was presented in this study have a small amount of change in the resonant frequency when the tool is replaced. Observing the relation between power and amplitude, can find that ½ wavelength horn’s amplitude is 1.5 times bigger than ¼ wavelength horn’s in the same power. If the demand want to get light and short tool holder, ¼ wavelength horn configuration is a better choice, and if want to get the higher amplitude, selecting ½ wavelength two-step horn can fulfill the requirement.
URI: http://hdl.handle.net/11455/2916
其他識別: U0005-1208201314084100
Appears in Collections:機械工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.