Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/29170
標題: 仙履蘭之器官培養
The Organ Culture of Paphiopedilum
作者: 林德承
Lin, De-Cheng
關鍵字: Paphiopedilum;仙履蘭;silver thiosulfate;floral parts organ;shorten stem;light intensity;light wave;temperature;硫代硫酸銀;花蕾器官;短縮莖;光強度;光質;溫度
出版社: 園藝學系所
引用: 王政琳. 1997. 拖鞋蘭微體繁殖技術之建立與改進. 碩士論文. 國立台灣大學農藝研究所. 64pp. 朱建鏞、王美陽. 1996. 光和二氧化碳對玫瑰花組織培養瓶培殖體生長的影響. 農林學報 45: 23-32. 朱建鏞、吳安娜. 2000. 玫瑰花微體繁殖補充二氧化碳於培養容器內之方法. 中國園藝 46: 211-220. 吳宗順. 2000. 二氧化碳及乙烯濃度對文心蘭與彩色海芋瓶苗生長之影響. 國立中興大學園藝學研究所碩士論文. 111pp. 李勇毅. 1995. 拖鞋蘭. p.923-926. 刊於農委會台灣農家要覽增修訂三版策劃委員會編著. 台灣農家要覽. 豐年社. 台北. 李勇毅. 1997. 拖鞋蘭分類及栽培管理. 台灣花卉園藝 117: 40-43. 李勇毅. 1998. 原生拖鞋蘭發育與無菌發芽之研究. 碩士論文, 國立台灣大學園藝學研究所, 台北, 75pp. 林永浩. 1998. 芭菲爾鞋蘭與石斛蘭之組織培養. 碩士論文. 中國文化大學生物科技研究所. p.20-30. 林文華. 2003. 淺談拖鞋蘭分類及雜交育種方向. 台灣花卉園藝 187: 34-39. 洪寶瑩. 2004. 芭菲爾鞋蘭、文心蘭、軛瓣蘭及堇蜘蘭之微體繁殖. 碩士論文. 國立台灣大學園藝研究所. p.5-12 徐淑芬.2004. 乙烯對蝴蝶蘭葉片再生及出瓶期對組培苗品質之影響. 碩士論文. 國立中興大學園藝研究所. 96pp. 高水恩. 2006. 國際仙履蘭產業現況與我國仙履蘭外銷前景. 農業世界. 280: 52-56. 高景輝. 1994. 植物生理賀爾蒙. 華香園. 台北. p.69-84. 張仁銓. 2007. 人工培植拖鞋蘭證明文件申請簡介及出口管理現況. 農政與農情. 178: 54-57. 許伊琍. 2007. 仙履蘭巴菲爾鞋蘭屬賞花圖鑑. 日月文化. 台北. p.43-123. 陳婷玉. 2000. 六種芭菲爾鞋蘭之組織培養. 碩士論文. 國立台灣大學園藝研究所. 55pp. 陳美惠. 1996. 果莢成熟度、種子前處理及培養基成分對拖鞋蘭無菌播種與幼苗生長之影響. 碩士論文, 國立台灣大學園藝學研究所,台北, 80pp. 麥奮. 1987. 拖鞋蘭之芭菲爾鞋蘭屬. 淑馨出版社 台北. p6-7. 馮家華. 2009. 芭菲爾鞋蘭及蝴蝶蘭之試管內形態發生. 碩士論文. 國立高雄大學生物科技研究所. 61pp. 黃禎宏. 2004. 蘭花淺介. 台灣蘭花產銷發展協會. p.86-112. 黃慧宜. 2009. 芭菲爾鞋蘭之微體繁殖. 碩士論文. 國立中興大學園藝研究所. 68pp. 蔡瑜卿. 2006. 我國拖鞋蘭培植場登記制度及拖鞋蘭種苗出口現況. 農業世界. 280: 58-62. 蔡瑜卿. 2007. 仙履蘭種苗出口現況. 仙履蘭產品發展座談會書面資料. p.8-15. 蔡瑜卿. 2009. 仙履蘭種苗出口現況. 仙履蘭產業發展座談會,種苗改良繁殖場。 蔡平里(譯). 1991. 圖解蘭花繁殖最新技術. p.21-58. 淑馨出版社. 台北. 劉黃碧圓. 1995. 芭菲爾鞋蘭無菌播種之研究. 碩士論文, 國立中興大學園藝學研究所, 台中, 118pp. 劉智惠 譯(Growertalks. August 1998). 2001. 台灣花會園藝月刊第134 期(10 月). p.10-13。 蕭元川. 1996. 蘭界的另一顆新星-拖鞋蘭. 台灣花卉園藝. 110: 42-43. 蕭元川. 2002. 拖鞋蘭種苗產業現況及問題. 植物種苗. 4: 51-54. Arditti, J. and Ernst, R. (1993) Micropropagation of Orchids , John Wiley &Son Inc., New York, pp:665 Arigita, L., A. Gonzalez, and R. S. Tames. 2002. Influence of CO2 and sucrose on photosynthesis and transpiration of Actinidia deliciosa explants in vitro. Physiol. Plant. 115: 166-17 Arigita, L., R. S. Tamés , and A. González. 2003. 1-Methylcyclopropene and ethylene as regulators of in vitro organogenesis in kiwi explants. Plant Growth Regulation 40: 59-64. Atta-Aly, M. A. 1992. Effect of high temperature on ethylene biosynthesis by tomato fruit. Post. Bio. Tech. 2: 19-24. Bermudez, P. P., M. J. Comejo, and J. Segura. 1985. Amorphogenetic role for ethylene in hypocotyl cultures of Digitalis obscura L. Plant Cell Rep. 4: 188-190. Bockers, M., V. Capkova. I. Ticha, and C. Schafer. 1997. Growth at high CO2 affects the chloroplast number but not the photosynthesis efficiency of photoautotrophic Marchanantia polymorpha culture cells. Plant Cell, Tissue and Organ Cult. 48: 103-110. Cabaleiro, C. and A. S. Economou. 1991. Effect of light on rooting in vitro of petunia mitroshoots. Acta Hort. 300: 189-196. Cash, C. 1991. The Slipper Orchids. Timber Press, Inc. Hong Kong. 228pp. Chang C. and Chang. 1998. Plant regeneration from callus culture of Cymbidium ensifolium var. misericors. Plant Cell Rep. 17: 251-255. Chee, R. and R. M. Pool. 1989. Morphogenic responses to propagule trimming, spectral irradiance, and photoperiod of grapevine shoots recultured in vitro. J. Amer. Soc. Hort. Sci. 114: 350-354. Chen, J.T. and Chang, W.C. 2000 Efficient plant regeneration through somatic embryogenesis from callus cultures of Oncidium (Orchidaceae). Plant Sci. 160:87-93. Chen, J.T. and Chang, W.C. 2001. Effects of auxins and cytokinins on direct somatic embryogenesis on leaf explants of Oncidium ''Grower Ramsey''. Plant Growth Regul. 34:229-232. Chen, J.T. and Chang, W.C. 2002. Effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis in Oncidium “Grower Ramsey”. Plant Cell Tiss. Org. Cult. 69:41-44. Chen, J.T. and Chang, W.C. 2003. 1-aminocyclopropane-1-carboxylic acid enhances direct somatic embryogenesis for Oncidium leaf cultures. Biol. Plant. 46:455-458 Chen, J.T. and Chang, W.C. 2003. Effects of GA3, ancymidol, cycocel and paclobutrazol on direct somatic embryogenesis of Oncidium in vitro. Plant Cell Tiss. Org. Cult. 72:105-108 Chen, J.T. and Chang, W.C. 2006. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol. Plant. 50:169-173 Chen, T.Y., J.T. Chen, and W.C. Chang. 2002. Multiple shoot formation and plant regeneration from stem nodal explants of Paphiopedilum orchids. In Vitro Cell Dev. Biol. Plant. 38: 595-597. Chen, T.Y., J.T. Chen, and W.C. Chang. 2004. Plant regeneration through direct shoot bud formation from leaf cultures of Paphiopedilum orchids. Plant Cell. Tiss. Org. Cul. 79: 11-15. Chraibi, K. M., A. Latche, J. P. Roustan, and J. Fallot. 1991. Stimulation of shoot regeneration from cotyledons of Helianthus annuus by the ethylene inhibitors, silver and cobate. Plant Cell Rep. 10: 204-207. Cos Terrer, J. and D. Frutos Tomas. 2001. Determination of macronutrients to be induced in vitro culture media according to leaf concerations. J. Hort. Sci. Biotechnol. 76: 484-488. Cribb, P. J. 1997. The Genus Paphiopedilum. The Royal Botanic. Gardens, Kew, in association with Timber Press. USA. p.301. Curry, E. A. 1991. NAA-induced ethylene and ACC in ‘Delicious’spur tissue: Changes with temperature and time. J. Amer. Soc. Hort. Sci. 116: 846-850. Decout, E., T. Dubois, M. Guedira, J. Dubois, J.-C. Audran, and J. Vasseur. 1994. Role of temperature as a triggering signal for organogenesis or somatic embryogenesis in wounded leaves of chicory cultured in vitro. J. Exp. Bot. 45: 1859-1865. Dimasi-Theriou, K., A. S. Economou and E. M. Sfakiotakis. 1993. Promotion of petunia (Petunia hybrid L.) regeneration in vitro by ethylene. Plant Cell Tiss. Org. Cult. 32: 219-225. Gloria, D.L. V., P. A. Fernando, P. D. Simon, V. J. Mitchell, A. P. Martin, and D. W. Lawlor. 1999. Effects of CO2 and sugars on photosynthesis and composition of avocado leaves growth in vitro. Plant Physiol. Biochem. 37: 587-595. Gouk, S. S., J. W. H. Yong, and C. S. Hew. 1996. Effects of super-elevated CO2 on the growth and carboxylating enzymes in an epiphytic CAM orchid plantlet. J. Plant physiol. 151: 129-136. Grout, S. S., J. He, and C. S. Hew. 1999. Changes in photosynthetic capability and carbohydrate production in an epiphytic CAM orchid plantlet exposed to super-elevated CO2. Environ. Exp. Bot. 41: 219-230. Hausman, J. H. 1993. Changes in peroxidase activity, auxin level and ethylene production during root formation by poplar shoots raised in vitro. Plant Growth Regul. 13: 263-268. Hirimburegama, K. H. and N. Gamage. 1995. Propagation of Bambusa vulgaris (yellow bamboo) through nodal bud culture. J. Hort. Sci. 70(3): 469-475. Hong, P.I., Chen, J.T. and Chang, W.C. 2008. Plant regeneration via protocorm- like body formation and shoot multiplication from seed-derived callus of a maudiae type slipper orchid. Acta Physiol Plant. 30:755- 759 Huang, M.C. and C.Y. Chu. 1985. A scheme for commercial multiplication of gerbera (Gerbera hybrida Hort.)through shoot tip culture. J. Jpn. Soc. Hort. Sci. 54: 94-100. Huang, L.C. 1988. Aprocedure for asexual multiplication of Paphiopedilums in vitro. Amer. Orchid Soc. Bull. 57: 274-278. Huang, L.C., C.J. Lin, C.I. Kuo, B.L. Huang, and T. Murashige. 2001. Paphiopedilum cloning in vitro. Scientia Hort. 91: 111-121. Huitema, J. B. M., G. C. Gussenhoven, J. de Jong, and J. J. M. Dons. 1987. Selection and in vitro characterization of low-temperature tolerant mutants of Chrysanthemum morifolium Ramat. Acta Hort. 197: 89-96. Jha. A. K., L. S. Dahleen., and J. C.Suttle. 2007. Ethylene influences green plant regeneration from barley callus. Plant cell Rep 26: 285-290. Jeong, B. R., C. S. Yang, and E. J. Lee. 1996. Photoautotrophic growth of Dianthus caryophyllus in vitro as affected by photosynthetic photon flux and CO2 concentration. Acta Hort. 440: 611-615. Joosten, J. M. C. B. and E. J. Woltering. 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. In: Lumsden, P. J., J. R. Nicholas and W. J. Davies(esd.), Physiology, Growth and Development of Plants in cultures. p.165-190. Kluwer Academic Publishers. Netherlands. Kadota, M., and Y. Niimi. 2003. Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell,Tissue and Organ Culture. 72: 261-265. Kanechi, M. and M. Ochi. 1998. The effects of carbon dioxide enrichment, natural ventilation, and light intensity on growth, photosynthesis, and transpiration of cauliflower plantlets cultured in vitro photoautotrophically and photomixotrophically. J. Amer. Soc. Hort. Sci. 123: 176-181. Kao, C. H. and S. F. Yang. 1982. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta 155: 261-266. Karam, N. S. and M. Al-Majathoub. 2000. In vitro shoot regeneration from mature tissue of wild Cyclamen persicum Mill. Sci. Hort. 86: 323-333. Katoka, I. and H. Inoue. 1992. Factors influencing ex vitro rooting of tissue cultured papaya shoots. Acta Hort. 321: 589-597. Kawase, K. 1990. Clonal propagation of Paphiopedilum by tissue culture. 3. Effect of flower age on PLB formation and vegetative growth of undeveloped buds. J. Jpn. Soc. Hort. Sci. 59(Suppl. 2): 666-667. Kawase, K. 1994. Clonal propagation of Paphiopedilum by tissue culture. 4. Formation and culture of knot-like-tissues and shoots from ovaries and flower stalks. J. Jpn. Soc. Hort. Sci. 63(Suppl. 2): 514-515. Kawase, K. 1995a. Induction of embryoids in shoot apex culture of Paphiopedilum. J. Jpn. Soc. Hort. Sci. 64(Suppl. 2): 52-53. Kawase, K. 1995b. Effects of thidiazuron on shoot propagation in Paphiopedilum. J. Jpn. Soc. Hort. Sci. 64(Suppl. 2): 598-599. Kawase, K. 1997. Inforescence culture in species of Paphiopedilum. J. Jpn. Soc. Hort. Sci. 66(Suppl. 1): 512-513. Kepczynski, J., A. Nemoykina, and E. Kepczynska. 2006. Ethylene and in vitro rooting of rose shoots. Plant Growth Regul. 50: 23–28. Kortessa, D. T. and A. S. Economou. 1995. Ethylene enhances shoot formation in cultures of the peach rootstock GF-677 (Prunus persica × P. amygdalus). Plant Cell Rep. 15: 87-90. Kozai,T., Oki, H. and Fujiwara, K. 1990.Photosynthetic characteristics of Cymbidium plantlet in vitro. Plant Cell Tiss. Org. cult.22:205-211. Kumar, P. P., P. Lakshmanan and T. A. Thorpe. 1998. Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev. Biol. 34p: 94-103. Kuo, H.L., Chen, J.T. and Chang, W.C. 2005. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ''Little Steve''. In Vitro Cell. Dev. Biol.– Plant. 41:453-456. Kumar. V., A. Ramakrishna., and GA. Ravishankar. 2007. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In vitro cell. Dev. Biol.-Plant 43: 602-607. Lee, N. and H. Y. Wetzstein. 1999. In vitro propagation of Muscadine grape by axillary shoot proliferation. J. Amer. Soc. Hort. Sci. 115: 324-329. Lee, Y. I. and Lee, N. 2003. Plant regeneration from protocrom-derived callus of Cypripedium formosanum. In Vitro Cell. Dev. Biol.Plant. 39:475-479 Lidon, F. C., M. da G. Barreiro, and F. S. Henriques. 1995. Interactions between biomass production and ethylene biosynthesis in copper-treated rice. J. Plant Nutr. 18: 1301-1314. Lin, Y. H., C. Chang, and W.C. Chang. 2004. Plant regeneration from callus culture of a Paphiopedilum hybrid. Plant Cell. Tiss. Org. Cul. 62: 21-25. Lu, M.C. 2004. High frequency plant regeneration from callus culture of Pleione formosana Hayata. Plant Cell Tissue Organ Cult. 78:93-96 Marks, T. R., and S. E. Simpson. 1994. Factors affecting shoot development in apocally dominant Acer cultivars in vitro. J. Hort. Sci. 69(3): 543-551. Ma, J. H., J. L. Yao, D. Cohen and B. Morris. 1998. Ethylene inhibitors enhance in vitro root formation from apple shoot cultures. Plant Cell Rep. 17: 211-214. Magdalita, P. M., I. D. Godwin, R. A. Drew, and S. W. Adkins. 1997. Effect of ethylene and culture environment on development of papaya nodal cultures. Plant Cell Tiss. Org. Cult. 49: 93-100. Mensuali-Sodi, A., M. Panizza and F. Tognoni. 1995. Endogenous ethylene requirement for adventitious root induction and growth in tomato cotyledons and lavandin microcutting in vitro. Plant Growth Regul. 17: 205-212. Naik, S. K., S. Pattnaik., and P. K. Chand. 2000. High frequency axillary shoot proliferation and plant regeneration from cotyledonary nodes of pomegranate(Punica granatum L.). Scientia Horticulturae. 85: 261-270. Neibaur, I., M. Gallo., and F. Altpeter. 2008. The effect of auxin type and cytokinin concentration on callus induction and plant regeneration frequency from immature inflorescence segments of seashore paspalum (Paspalum vaginatum Swartz). In vitro cellular & developmental biology. Plant., Plant. 44: 480-486. Norgaard, J. V. and P. Krogatrup. 1991. Cytokinin induced somatin embryogenesis from immature embryos of Abies nordmanniana Lk. Plant Cell Rep. 9: 509-513. Nour, K. A. and T. A. Thorpe. 1994. The effect of the gaseous state on bud induction and shoot multiplication in vitro in eastern white cedar. Physiol. Plant. 90: 163-172. Oda, Y. 1989. Effect of light intensity, temperature and CO2 concentration on photosynthesis and growth of strawberry plantlet cultured in vitro. Acta Hort. 265: 399-403 Paek, K. Y. and E. J. Hahn. 2000. Cytokinins, auxins and activated charcoal affect organogenesis and anatomical characteristics of shoot-tip cultures of Lisianthus (Eustoma grandiflorum (Raf.) Shinn). In Vitro Cell Dev. Biol. Plant. 36: 128-132. Panizza, M., A. M. Sodi and F. Tognoni. 1993. Role of ethylene in axillary shoot proliferation of lavandin ─ interaction with benzyladenine and polyamines. J. Exp. Bot. 44: 387-394. Park, S. U. and P. J. Facchinj. 1999. High-efficiency somatic embryogenesis and plant regeneration in California poppy, Eschscholzia californica Cham. Plant Cell Rep. 19: 423-426. Park, S.Y., Murthy, H.N. and Paek, K.Y. 2000. Mass multiplication protocorm like bodies using bioreactor system and subsequent plant regeneration in phalaenopsis. Plant Cell Tiss. Org. Cult. 63:67-72 Park, S.Y., Murthy, H.N. and Paek, K.Y. 2002. Rapid propagation of Phalaenopsis form floral stalk-derived leaves. In Vitro Cell. Dev. Biol.-plant. 38:168-172 Paulsen, G.M. 1994.High temperature response of crop plant.In Physiology and Determination of Crop Tied.Eds.Boote.pp365-389 Pierik, R. L. M. 1987. Germination of orchid seeds. P.149-158. In:Pierik, R. L. M. (ed.) In Vitro Culture of Higher Plants. Martinus Nijhoff Publishers, Hingham. Pierik, R. L. M., P. A. Sprenkels, H. B. Van Der, and M. Q. G. Van Der. 1988. Seed germination and further development of plantlets of Paphiopedilum ciliolare Pfitz. In vitro. Scientia Hort. 34: 139-153. Pliigo-Alfaro, F., R. E. Litz, P. A. Moon, and D. J. Gray. 1996. Effect of abscisic acid, osmolarity and temperature on in vitro development of recalcitrant mango nucellar embryos. Plant Cell Tiss. Org. Cult. 44: 53-61. Preece, J. E. and C. A. Huetteman. 1991. Micro- and cutting propagation of silver maple. I. Result with adult and juvenile propagules. J. Amer. Soc. Hort. Sci. 116: 142-148. Sabo, A., T. Krekling and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in virto. Plant Cell, Tissue, and Organ Cult. 41:177-185. Sakar, D., S. K. Kaushik, and P. S. Naik. 1999. Minimal growth conservation of potato microplants: silver thiosulfate reduces ethylene-induced growth abnormalities during prolonged storage in vitro. Plant Cell Rep. 18: 897-903. Shin, K. S., Y. Y. Cui, M. W. Jeon, E. J. Hahn, S. Ichihashi and K. Y. Paek. 2001. Environmental factors affect micropropagation and hydroponics culture of Phalaenopsis. Proceedings of APOC7. Nagoya. Japan. Stewart, J. and J. Button. 1975. Tissue culture studies in Paphiopedilums. Amer. Orchid Soc. Bull. 44: 591-599. S. S., J. He, and C. S. Hew. 1999. Change in photosynthetic capability and carbohydrate production in an epiphytic CAM orchid plantlet exposed to super-elevated CO2. Environ. Exp. Bot. 41: 219-230. Tadeo, F. R., T. Darius, and P. M. Eduardo. 1995. 1-aminocyclopropane-1-carboxylic acid ─ induced ethylene stimulates callus formation by cell enlargement in the cambial region of intermodal explants of Citrus. Plant Sci. 110: 113-119. Taiz, L., and E. Zeiger. 2006. Plant physiology. 4th ed. Sinauer Associates, Inc, Gouk. Tanaka, M., M. Tsutsui, E. Ohno, T.S. Zhou, and T. Takamura. 1995. Micropropagation of Paphiopedilum. 1. Plantlet formation in culture transverse thin sections from seedlings grown in vitro. J. Jpn. Soc. Hort. Sci. 64(Suppl. 2): 596-597. Tanaka, M., E. Ohno, T. Takamura, and T.S. Zhou. 1996. Micropropagation of Paphiopedilum. 2. Induction of plantlets as the TTS sources from cultured terminal buds of flower stalks. J. Jpn. Soc. Hort. Sci. 65(Suppl. 2): 630-631. Tanaka, M., D. C. H. Yap, C. K. Y. Ng, and C. S. Hew. 1999. The physiology of Cymbidium plantlets cultured in vitro under conditions of high carbon dioxide and low photosynthetic photon flux density. J. Hort. Sci. Biot. 74(5): 632-638. Wilson, S. B., K. Iwabuchi, and N. C. Rajapakse. 1998. Responses of broccoli seedlings to light quality during low-temperature storage in vitro: II. Sugar content and photosynthetic efficiency. HortScience 33: 1258-1261. Wu, I.F., Chen, J.T. and Chang, W.C. 2004. Effects of auxins and cytokinins on embryo formation from root-derived callus of Oncidium ‘Gower Ramsey’. Plant Cell Tiss. Org. Cult. 77:107-109 Yamagishi, M. 1998. Effects of culture temperature on the enlargement, sugar uptake, starch accumulation, and respiration of in vitro bulblets of Lilium japonicum Thumb. Scientia Hort. 73: 239-247. Yasugi, S. and N. Yagi. 1995. Mericlonal plantlet formation in Paphiopedilum by shoot tip culture. 1. Some effecting factors on shoot and root formation. J. Jpn. Soc. Hort. Sci. 64(Suppl. 1): 516-517.
摘要: 
本試驗主要使用仙履蘭不同花蕾器官及營養器官培養於不同培養基中,探討其誘導率及生長情形。並使用不同環控條件如溫度、光度、光質來觀察對不同器官誘導芽體及生長的影響。
利用仙履蘭花蕾器官培養於不同培養基中。試驗結果顯示子房基部於添加STS (silver thiosulfate)的培養基中能成功誘導出芽體,子房胎座部位也有瘤狀突起的產生。Kinetin對花蕾器官誘導最適當的濃度為4 mg/l,對瓶苗短縮莖之葉柄及根部亦能促進器官型態發生。使用不同成熟度的花蕾器官培養時,發現較幼嫩狀態及發育完整階段的花蕾器官有較高的誘導率,氣體分析研究發現二氧化碳於3-5週時會開始累積,經切片觀察芽體也開始萌發。
使用不同環控條件來誘導仙履蘭花蕾器官及瓶內短縮莖。試驗結果顯示短縮莖於光通量密度(PPFD)36.6μmol m-2s-1 條件下培養較18.3μmol m-2s-1 及黑暗中培養,其植株生長較佳,葉綠素含量及TTC活性也較高。使用不同光質來誘導短縮莖,試驗結果顯示以藍光對芽體誘導效果最好,地上部生長較佳,而紅光能使仙履蘭根部生長情形較佳。短縮莖在溫度15℃誘導時,其萌發芽體在照光後生長狀況較以20及25℃誘導者為差,葉綠素含量及TTC濃度皆明顯較低。
本試驗結果顯示,花蕾器官誘導時建議使用以B5配方為基礎培養基,另外添加0.05mM STS及配合1 mg/l NAA、4 mg/l Kinetin、0.5 mg/l 2,4-D的生長調節劑,黑暗誘導4週後繼代,繼代培養環控條件以光強度36.6μmol m-2s-1,並配合藍光芽體生長情形較佳。

The purpose of this study is to investigate the differences of the inducing rate and growth by using different floral parts and vegetative organ of Paphiopedilum cultivating in dissimilar media. The second purpose is to observe different temperature, light intensity, and light quality on the organ inducing and growth.
The study cultivated Paphiopedilum organ in different media. The result showed that the base of ovary in the medium which added STS (silver thiosulfate) could induce shoot formation successfully, and there was some nodule like protrusion produced in the ovary placenia. The most appropriate concentration of Kinetin for organ inducing was 4 mg/l, and it could also make organogenesis from petioles and roots of flask shorten stem. While using different mature level of floral parts organ to cultivate, the younger stage and at more complete development stage had the higher inducing rate. The gas analysis result showed that carbon dioxide was accumulated in 3~5 weeks, and technique of paraffin section also showen shoot formation.
We used different environment conditions to inducing floral parts and shorten stem of Paphiopedilum. The experiment result showed shorten stem inducing at PPFD 36.6 μmol m-2s-1 was better than at 18.3 μmol m-2s-1 and in the dark. The shoot grown better , had higher chlorophyll content and root activity. Using different light wave for inducing shorten stem, the blue light had the best effect, especially on the overground parts; the red light had a better growth on roots. The inducing process of shorten stem at 15℃ made a better growth than at 20℃ and 25℃, the chlorophyll content and the root activity were both lower.
To have a better floral organ inducing result, the experimentoutcome suggested that using B5 basal medium add 0.05mM STS, with 1 mg/l NAA, 4 mg/l Kinetin and 0.5 mg/l 2,4-D. Then put them in the dark for 4 weeks to make the subculture, and using higher light intensity with blue light for the subculture.
URI: http://hdl.handle.net/11455/29170
其他識別: U0005-1808201011504100
Appears in Collections:園藝學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.