Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/2917
DC FieldValueLanguage
dc.contributor盧銘詮zh_TW
dc.contributor.author蘇孟慧zh_TW
dc.contributor.authorSu, Meng-Huien_US
dc.contributor.other機械工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-05T11:44:19Z-
dc.date.available2014-06-05T11:44:19Z-
dc.identifierU0005-2708201312203300en_US
dc.identifier.citation[1]C. Y. Zhao, X. Li and F. Jiao, “Research on Crack Mechanism of Surface/Subsurface Based on Grinding Stress Field in Ultrasonic Grinding Nano-Ceramics,” Applied Mechanics and Materials, Vol. 42, 2010, pp.444-448 [2]M. Zhou, B.K.A. Ngoi, Z.W. Zhong and C. S. Chin, ” Brittle-ductile Transition in Diamond Cutting of Silicon Single Crystals,” Materials and Manufacturing Processes, Vol. 16, 2012, pp.447-460 [3]R. Komanduri, D. A. Lucca, and Y. Tani, “Technological Advances in Fine Abrasive Processes,” Annals of the CIRP, Vol. 46, 1997, pp.545–596. [4]M. B. Cai, X. P. Li, M. Rahman, “Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamic simulation,” International Journal of Machine Tools & Manufacture, Vol. 47, 2007, pp.75–80. [5]Z. J. Pei, P. M. Ferreira, S. G. Kapoor , M. Haselkorn, ”Rotary ultrasonic dilling and milling of ceramics,” Journal of Machine Tools and Manufacture, Vol.36, 1995, pp.1033-1046 [6]J.P. Kang, “A study on ultrasonic vibration cutting of fine ceramics,” Ph.D. Thesis, Pusan National University, 1993. [7]J. Kumabe, K. Fuchizawa, T. Soutome, Y. Nishimoto, ”Ultrasonic superposition vibration cutting of ceramics,” Precision Engineering, Vol. 11, 1989, pp.71-77 [8]J. Kumabe, “Fundamentals and Application of Vibration Cutting,” Jikkyou Publishing Company, 1979. [9]X. H. Shen , J. Zhang , D. X. Xing ,Y. Zhao, “A study of surface roughness variation in ultrasonic,” International Journal of Advanced Manufacturing Technology, 2012, pp 553-561 [10]M. Arif, M. Rahman, W. Y. San , “Ultraprecision ductile mode machining of glass by micromilling process,” Journal of Manufacturing Processes, 2011, pp 50-59 [11]M. Arif , M. Rahman ,W. Y. San, “An experimental study on the machining characteristics in ductile-mode milling of BK-7 glass,” International Journal of Advanced Manufacturing Technology, 2012, pp. 487-495 [12]M. R. Razfar, P. Sarvi, M. A. Zarchi, ” Experimental investigation of the surface roughness in ultrasonic-assisted milling,” Proc. IMechE, Vol. 225, 2011,pp.1616-1620 [13]T. Tawakoli, B. Azarhoushang, M. Rabiey, ” Ultrasonic assisted dry grinding of 42CrMo4,” International Journal of Advanced Manufacturing Technology, Vol. 42, 2009, pp 883-891 [14]G.F. Gao, B. Zhao, D.H. Xiang, Q.H. Kong, ”Research on the surface characteristics in ultrasonic grinding nano-zirconia ceramics,” Journal of materials processing technology, vol.209, 2008, pp.32-37 [15]B. Zhao, C. Zhao, B. Du, ”Experimental Study on Damage Mechanism of Nano-Ceramic Surface/Subsurface under Ultrasonic Vibration Aided Grinding,” Solid State Phenomena,Vol. 175, 2011, pp 107-111 [16]W. Horst, H. Juergen, P. Rolf, “Turning of machinable glass ceramics with an ultrasonically vibration tool,” Vol. 33, 1984, pp.85-87 [17]J. Gan, X. Wang, M. Zhou, B. Ngoi, Z. Zhong, ”Ultraprecision Diamond Turning of Glass with Ultrasonic Vibration,” CIRP Annals, Vol. 21, 2003, pp.952-955 [18]C. Zhang, D. Zhang, X. Ma, “effects of ultrasonic vibration on machining accuracy in micro drilling,” Advanced Materials Research, Vol. 102-104, 2010, pp. 521-524 [19]H. Onikura, A. katsuki , ”Vibration Characteristics of Drill with reference to effects of main cutting edges,” A chisel Edge and aargins, Vol.54, 1998, pp.1691-1696 [20]K. Egashira, K. Mizutani, T. Nagao, “Ultrasonic Vibration Drilling of Microholes in Glass,” CIRP Annals - Manufacturing Technology, Vol. 51, 2002, pp. 339-342 [21]K. I. Ishikawa, H. Suwabei, T. Nishide, M. Uneda, “Study on combined vibration drilling by ultrasonic and low-frequency vibrations for hard and brittle materials,” Precision Engineering,Vol.22 , 1998, pp.196-205 [22]Y. S. Liao, Y. C. Chen, H. M. Lin, “Feasibility study of the ultrasonic vibration assisted drilling of Inconel superalloy,” International Journal of Machine Tools and Manufacture, Vol. 47, 2007, pp.1988-1996. [23]F. Jiao and B. Zhao ,“Influence of Ultrasonic Assistance on Material Removal Mechanism of Hard and Brittle Materials Based on Single-point Scratch, ” Applied Mechanics and Materials, Vol. 487, 2011, pp.413-418 [24]E. Shamoto, T. Moriwaki, “Study on elliptical vibration cutting, ” CIRP Annals - Manufacturing Technology, Vol. 43, 1994, pp.35-38 [25]E. Shamoto, T. Moriwaki, S. Y. Chan, K. Seido, “Development of a Elliptical Vibration Milling Machine,” CIRP Annals - Manufacturing Technology, Vol. 53, 2004, pp.341-344 [26]C. Nath, M. Rahman, K.S. Neo, “A study on ultrasonic elliptical vibration cutting of tungsten carbide,” Journal of Materials Processing Technology, Vol. 209, 2009, pp. 4459-4464 [27]E. Shamoto, S. Norikazu, ”Elliptical Vibration Cutting of Hard Mold Materials,” 2008. [28]J. S. Lee, D. W. Lee, H.Y. Jung, W. S. Chung, “A study on micro-grooving characteristics of planar lightwave circuit and glass using ultrasonic vibration cutting,” Journal of Materials Processing Technology, Vol. 130-131 ,2002 ,pp.396-400 [29]Y. Peng, Y. B. Wu, Z. Q. Liang, Y. B. Guo, X. Lin, “An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration,” International Journal of Advanced Manufacturing Technology, Vol. 54 ,2011, pp. 941-947 [30]李正中,1999,薄膜光學與鍍膜技術,藝軒圖書出版社。 [31]安永暢男,高木純一郎,2004,精密機械加工原理,全華圖書 [32]J. Yan , T. Asami, H. Harada, T. Kuriyagawa, “Fundamental investigation of subsurface damage in single crystalline silicon caused by diamond machining,” Precision Engineering, Vol. 33, 2009, pp.378-386, . [33]柯晟斌,2005,振動高速銑削應用於鍍層刀具加工之研究,國立雲林科技大學機械工程系碩士班碩士論文 [34]D.E. Brehl , T.A. Dow, “Review of vibration-assisted machining ,” Precision Engineering ,Vol. 32, 2008, pp.153–172. [35]林維新,紀松水,1987,切削理論,全華圖書 [36]A. Aramcharoen, P. T. Mativenga, ”Size effect and tool geometry in micromilling of tool steel,” Precision Engineering, Vol. 32, 2009, pp. 402-407.en_US
dc.identifier.urihttp://hdl.handle.net/11455/2917-
dc.description.abstract隨著科技進步以及工具機不斷的發展,壓電材料的應用越來越廣泛,多以蝕刻方式進行加工,缺點包含效率低、圖案化不易及加工成本高,因此需發展易於半導體製程且高效率的加工方式,一般機械加工擁有加工較有彈性之優點,但易造成加工後的表面產生裂紋與凹坑現象,如利用超音波輔助振動的特性可達成對硬脆材料進行延性切削加工之目的並改善刀具快速磨耗的問題。 本研究以超音波輔助銑削與鑽削方式進行實驗,並分析超音波振動在銑削與鑽削加工中對加工表面品質的影響;實驗於精密三軸綜合加工機上進行,加工晶片則安裝於超音波換能器之上以提供加工中所需之超音波振動,另外安裝微型動力計於換能器之下,以量測加工中之切削力,切削完成後之表面形貌則以白光干涉儀與顯微鏡觀察加工之品質,切屑則於收集後以SEM觀察其形貌。 實驗結果顯示,超音波輔助銑削與鑽削可改善PZT薄膜/矽晶圓加工表面與孔洞品質;在銑削過程中,超音波輔助振動可提升臨界進給;在鑽削時,可降低切屑堵塞的問題。在刀具磨耗改善方面,超音波輔助加工比一般加工後的刀具磨耗量減少至1/2倍,也可改善其鍍膜脫離的現象。zh_TW
dc.description.abstractThe PZT thin film draws much more attention in developing the MEMS device. However, the efficiency of pattern generation by etching process limits its range of applications. To improve the flexibility and efficiency in the manufacturing of PZT thin film based device, micro metal cutting process provides a potential solution if the ductile mode cutting can be achieved during manufacturing. In this study, the performance of the ultrasonic assisted micro cutting along with CVD diamond coated micro tool was investigated in micro milling and drilling of PZT thin film deposited wafer. The experiments were conducted on a three-axis high precision machine tool. During machining, the wafer was clamped on a Z direction ultrasonic vibrator and the cutting force was measured by a Kistler dynamometer installed under the ultrasonic vibrator. After performing machining, the chip was collected and investigated by SEM. The profile and surface roughness of the finished surface were investigated by a microscope and a white light interferometer as well. The results show that the fracture on machined surface in the micro milling and drilling of PZT/Si wafer can be reduced by adding the ultrasonic vibration to the system. In micro drilling of PZE/SI wafer, the chip clogging and the surface fracture can be reduced. Moreover, the tool wear can also be reduced if the ultrasonic vibration assisted machining was conducted.en_US
dc.description.tableofcontents致謝 I 摘要 II Abstract II 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目標 11 1.4 本文架構 12 第二章 基本理論 13 2.1鋯鈦酸鉛(Lead Zirconate Titanate, PZT) 13 2.1.1 PZT薄膜材料製程 13 2.2脆性材料加工 14 2.3延脆轉換區 15 2.4超音波輔助加工 17 2.5切屑生成型態模式 18 第三章 實驗設備與實驗規劃 21 3.1 實驗設備 21 3.1.1 加工設備 22 3.1.2 超音波振動系統 24 3.1.3 壓電換能器夾治具設計 26 3.1.4 切削刀具與工件材料 26 3.2 量測設備 28 3.2.1 光學顯微鏡 28 3.2.2 雷射位移計 - LK-G5000 , LK-H008 29 3.2.3 振動系統之振幅量測設備 29 3.2.4 白光干涉儀 - Zygo NV7100 31 3.2.5 場發射掃描式電子顯微鏡(FE-SEM) 32 3.3 感測器與訊號擷取設備 33 3.3.1 切削動力計 33 3.3.2 訊號擷取卡 34 3.4 實驗規劃 34 第四章 實驗結果分析與討論 36 4.1超音波輔助銑削脆性材料之加工表面分析 36 4.1.1超音波振動振幅大小影響分析 36 4.1.2 PZT薄膜與矽晶圓加工性能分析 39 4.1.3 進給參數對於銑削之影響分析 40 4.2 超音波輔助鑽削脆性材料之加工孔洞分析 42 4.2.1 切削深度的影響 43 4.2.2 PZT薄膜與矽晶圓鑽削品質差異分析 48 4.3 超音波振動輔助加工對刀具磨耗之影響分析 49 4.3.1 超音波輔助銑削對刀具磨耗之影響 50 4.4 超音波輔助鑽削與銑削在不同參數下的訊號分析 52 第五章 結論與未來展望 58 5.1結論 58 5.2未來展望 58 參考文獻 59zh_TW
dc.language.isozh_TWen_US
dc.publisher機械工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2708201312203300en_US
dc.subject超音波輔助鑽削zh_TW
dc.subjectultrasonic assisted drillingen_US
dc.subject超音波輔助銑削zh_TW
dc.subjectPZTzh_TW
dc.subject切削力訊號zh_TW
dc.subjectultrasonic assisted millingen_US
dc.subjectPZT thin filmen_US
dc.title超音波輔助切削於鋯鈦酸鉛(PZT)薄膜加工應用之研究zh_TW
dc.titleStudy of ultrasonic assisted cutting for PZT thin film machining.en_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:機械工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.